
RADC-TR-77-14 8
Final Technical Report

,.Wft, May 1977

COMPILER ACCEPT'ANCE CRI'IRIA GUIDEBOOK

Proprietary Software Systems, Incorporated

Approved for public release; distribution unlimited.

>?ROME AIR DEVELOPMENT CENTER
:)Air Force Systems Command

C.: Griffiss Air Force Base, New York 13441

LA.



This report has been reviewed by the RADC Information Office (01) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public including foreign nationa.

This report has been reviewed and is approved for publication.

APPROVED:

DOUGLAS WHITE
Project Engineer

APPROVED: &
ALAN R. BARNUM
Assistant Chief
Information Sciences Division

FOR THE COMMANDER:

JOHN P. HUSS
Acting Chief, Plans Office

DoIANOUnCV' "a

Do not return this copy. Retain or destroy.



SECURITYCLASIFICA ION OF THIS PAGE (R7~an Data Entered)__________________

Q 4 REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
"L.F.01BEFORE COMPLETING FORM

R~r NMB~f----2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITI f iTYP -. '11- Ta PERIOD COVERED
COMPILER ACCEPTANCE CRITERIA GUIDEBOOK F"inal Technical ep~t.

Joel1/ le is s
Guy/Phillips i, F30602-76-C-6229 II-"~
Anpel Avarez
VPERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT PROJECT, TASK

AREA & WORK UNIT NUMBERSProprietary Software Systems, Inc.
292 South LaCienega Blvd/Suite 218 672
Beverly Hills CA 90211 (~6(558T1217 'U

T1. CONTROLLING OFFICE NAME AND ADDRESS -2 EOTDT
Rome Air Development Center (ISIS) May______3077/_____k Griffiss AFB NY 13441 '~13. NUMBER OFPAGES

14. MONITORING AGENCY NAME & ADDRESS(if diff erent from Controlling Office) IS. SECURITY CLASS. (of this report)

Same UNCLASSIFIED

15s. DECLASSIFICATION DOWNGRADING

NASCHEDULE

IS. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of te abstract entered in Block 20, if different from Report)

Same

IS. SUPPLEMENTARY NOTES

RADC Proj ect Engineer: Douglas White (ISIS)

I$. KEY WORDS (Continue on fevers* aide it necessary and identify by block number)
* Computers

Compilers
Prograimming Language

*ABSTRACT (Continue an, reverse side it necessary and Identify by block number)
PSS has composed a set of criteria that may be used to provide guidance in the

specific area of compilers. The guidelines contain a check list of items that
should be considered in the specification of a compiler and the acceptance and
testing of that compiler. Examples and sample forms are provided to demonstrate

* the use of the guidelines described in the report.

DD I OR 1473 EDITION OF I NOV 65 IS OBSOLETE UCASF~

SECURITY CLASSIFICATION OF T14IS PAGE (When Dates Entered)



I. Project Background

The acquisition of a compiler system often represents the

most critical aspect in the development of a successful

boftware system. Heretofore, virtually no guidelines

were provided for buyers to facilitate the saecification

of a new compiler.

Software development involves many considerations. The

selection of the appropriate lanquaqe tools in the deve-

lopment process is not only critical, but will have major

effects in terms of cost, development time, efficiency,

portability, and ease of maintenance and modification.

Minimizing programing errors often depends a great deal

on matching the complexity of the application with an

appropriate programming language. Many variables should

be considered when deciding on the features of a particular

system.

* There is a myriad of facilities and features that a compiler

* system might possess with respect to a modern computer

° system. Also there is no doubt that the specific require-

ments for compiler systems in different installations are

widely divergent and based on the best utilization of

* available resources for particular applications.

FMCADflC PA~a&*A..NI, FrUMD



.

II. Objective

The purpose of this research and development project was

to define criteria and guidelines which could be used in

compiler procurement specification and acceptance decision

* imaking processes. The resultant document, "Compiler

Specification/Acceptance Handbook" is intended to be used

as a guidebook in the specification of a compiler system

and in the analysis of its acceptability.

The purpose of the document is to aid the compiler pro-

curement agency. It is a guide to the specification of

appropriate compiler design, implementation, testing and

acceptance. Vo attempt was made to design or suggest a

universal set of tests for all languages and compilers.

In many cases, automated verification systems already

exist for this purpose (JCVS - JOVIAL Compiler Validation

System). It does suggest topics which should be considered

in designing tests for a specific project and indicates

usual results of importance. The weighting factors

*assigned are based on "sample" systems and compiler

requirements and are by no means fixed. Each agency must

assign its own weights and relative importance to each item.

The sample weights are hypothetical auidelines to help each

procurement agency to develop its own historical specification/

acceptance criteria.

2



!II. The Handbook

The compiler specification criteria developed provide respon-

sible individuals with a means of identifying the features

and facilities a compiler system should contain to best

utilize its available resources within the necessary budget

and time constraints. A chart of major considerations was

developed with sub-charts delineating each major chart item.

It was the conclusion of this effort that the best method

for insuring an acceptable compiler is an acceptable

specification. Therefore, a great deal of emphasis was

placed on compiler specification criteria.

Compiler acceptability, therefore, became a matter of

reviewing the items specified and assigning approptiate

weighting scores which would eventually determine when a

compiler is acceptable. Acceptance matrices were developed

which contain the major areas of consideration. These

matrices are to be used to calculate an acceptability

index. Sub-matrices were developed for each major item

within the matrix. A predetermined sub-matrix item weiaht

along with a user determined acceptability factor will be

utilized to calculate a score. The score will then be

used as an index into an acceptability chart. The Weiqhts

or potential scores used are based on sample matrix

applications to existing compilers.

3



In addition to the charts and matrices, examples were

developed which should help the user to make specific

choices according to the desired needs of a specific

compiler system.

The form and content of the handbook are based on the

conclusions reached during the research phase of the effort.

This included:

e A wide range of differing 'authoritative' and

'expert' opinions and definitions exist with respect

to:

compiler components, processes and structure

compiler 'features'

compiler 'optimization' and 'optimizers'

programming lanquage definitional forms

Koperating system functional characteristics

compiler efficiency

measures of efficiency

e A number of previous study efforts relating to

program characteristics of programs codod in higher

order languages support views which are diametri-

cally opposed to each other.

4



" That in all previous efforts significant and accurate

data has not been accumulated in a disciplined

fashion within a 'production' environment to lend

'authoritative' credence to an absolute set of

criteria or guideline for procuring a compiler.

" That subjective (empirically developed over time)

'weights' have to be established and assigned to

the following type items in deciding what specifi-

cations and requirements are to be included in

procuring a compiler:

a. value of human resources in program develop-

ment, debugging and maintenance phkses.

b. value of computer time used in the compila-

tion process and that of the program execution

time.

c. value of linear time available to a project or

installation (time required to implement a

compiler).

d. value of the total dollar cost of developing,

debugging and maintaining a compiled with

extensive features.

5



IV. Future Efforts--Updating the Handbook

It became apparent at a very early stage in the study that

if the procuring agency stressed a particular item in its

specification, then all acceptance criteria effected by

that item would be weiqhted heavily.

For example, if precise language definition was stressed

in the specification, then the accuracy and reliability

of syntax/semantics analyzers (acceptance criteria) would

be heavily weighted.

Therefore, the sample Compiler Acceptance Evaluation Matrix

developed was based on a hypothetical "average" compiler.

The values assigned represent composites of values derived

from the analysis of several languages and their compilers.

The procuring agency should prepare a new set of potential

scores as a function of language, project, user group and

other constraints discussed in the handbook. For example,

a file management system written in COBOL would probably

not depend heavily on numeric accuracy (past 3 decimal

places) or even resource utilization; but, it is likely

that system interface would be extremely important.

It seems advisable that future compiler system contracts

include, as part of the payment, an amount based on the

6



F acceptability score. This additional financial reueration

could provide the incentive needed to turn acceptable and

good comiliers into excellent compiler systems.

7



EVALUATION

The procurement of compilers for computer programming languages is an

important and difficult task. The quality of the resultant compiler and the

aids it provides the programmer can determine costs or savings that are many

times greater than the price of the compiler. Many government agencies that

do not have expertise in the field of compilers have requirements to procure

compilers including the specification and acceptance of these compilers. The

goal of the Compiler Acceptance Criteria Guidebook effort was to develop a

document that would provide assistance to government agencies in the procurement

of compilers.

Proprietary Software Systems, Incorporated was selected to develop guide-

lines and to produce the guidebook. The guidebook that was produced contains

information that will assist in the procurement of more cost effective compi-

lers by insuring more complete specification of the compiler and more adequate

criteria by which the compiler is accepted. Use of these guidelines should

result in higher quality and more useful compilers with the end result of lower

software costs.

DOUGLAS WHITE
Project Engineer



TABLE OF CONTENTS

Page

Introduction... .. .. .. .. . .. .. .. Addendum. .A-iii

Part 1 Compiler Specification .. ..... ... . . 1-1

1.1 Compiler Costs ... . . .. .. .. ... 1-3
1.2 Language Definition . ..... . . . . 1-14
1.3 Compiler options ...... . . . . . . 1-19
1.4 Extensibility .. .. .. .. .. .. ... 1-33
1.5 Transferability .. .. .. .. .. .... 1-37
1.6 Environment . .. .. .. .. .. .. ... 1-50
1.7 System Interface .. ..... .... . . 1-52
1.8 User Profile.. .. ..... . .. .. . .1-58

1.9 Documentation ....... . . . . . . 1-60
1.10 Schedule .. .. .............. 1-65
1.11 Acceptance Tests . . . .. .. .. .. ... 1-67
1.12 Maintenance and Support . . . . . . . . . 1-72

Part 2 Compiler Acceptance. ..... ... . . . . 2-1

2.1 Accuracy and Reliability .. ..... .. 2-4
2.2 Resource Utilization . . .. .. .. .. .. 2-18
2.3 User interface .. . . . . . .. .. . .2-28

2.4 Documentation .. . . . .. .. .. .. .. 2-30
2.5 System Interfaces .. ........... 2-35
2.6 Options . . . . . .. .. .. .. .. . .2-37

2.7 Extensibility .. .. .. .. .. .. ... 2-41
2.8 Transferability. ..... ....... 2-43

Ji 2.9 Schedule and Installation . .. .. .. .. 2-46
2.10 User Profile Adherence .. . ...... . 2-49

Part 3 Compiler Acceptance Evaluation Matrix . . . 3-1

APPENDIX A References . . . . . . . . . . .. .. .. A-1

Addendum
A-i



INTPODUCTION

This document is intended to be used as a ouidebook in the

specification of a compiler system and in the analysis of

its acceptability. It is divided into three major parts,

compiler specification criteria, compiler acceptance

scoring, and a sample acceptance scoring matrix.

Part 1 may be used as a glossary of compiler terminology

It should be reviewed carefully by the reader unfamiliar

with these terms before nroceeeina to parts 2 and 3.

The purpose of this document is to aid the compiler pro-

curement agency. It is a guide to the specification of

appropriate compiler design, implementation, testing and

acceptance. No attempt is made to design or suqgest a

universal set of tests for all languages and compilers.

In many cases, automated verification systems already

exist for this purpose (JCVS - JOVIAL Compiler Validation

System). It does suggest topics which should be con-

sidered in designing tests for a specific project and

indicates usual results of importance. The weighting

factors assigned in Part 3 are based on "sample" systems

and compiler requirements and are by no means fixed.

Each agency must assign its own weights and relative

importance to each item. The sample weights are

Addendum
A-iii

p i3no61 pAa.AN.NYP FILMED



II

hypothetical guidelines to help each procurement agency

to develop its own historical specification/acceptance

criteria.

Part 1, Compiler Specification Criteria, provides respon-

sible individuals with a means of identifying the features

and facilities a compiler system should contain to best

utilize its available resources within the necessary budget

and time constraints. A chart of major considerations is

provided with sub-charts delineating each major chart item.

It was the conclusion of this effort that the best method

for insuring an acceptable compiler is an acceptable

specification. Therefore, a great deal of emphasis is

placed on Part I, Compiler Specification Criteria.

Part 2, Compiler Acceptability, reviews the items specified

in Part l and assigns appropriate weighting scores which

will eventually determine when a compiler is acceptable.

The acceptance matrices are provided which contain the major

areas of consideration. These matrices are used to calculate

an acceptability index; Sub-matrices are provided for each

major item within the matrix. A predetermined sub-matrix

item weight along with a user determined acceptability

factor is utilized to calculate a score. The score is then

used as an index into an acceptability chart. The weights

Addendum
A- iv



or potential scores used in Parts 2 and 3 are based on

sample matrix applications to existing compilers.

In addition to the charts and matrices, examples are

provided which help the user to make specific choices

according to the desired needs of a specific compiler

system.

Part 3, the sample Acceptance Scoring Matrix is a

summarization of the topics discussed in Part 2. In this

matrix, the acceptance items are listed with the corres-

pondina weightina factors appropriately broken down into

sub-matrix form.

It should be noted that the specification and eventual

acceptability of a compiler system is a complex process.

This guideline establishes an orderly approach in deter-

d mining the specification and acceptability criteria for

a compiler system. It thereby helps to insure a thorough

and objective decision-making process when selecting a

compiler.

Addendum

A-v



Part 1 Compiler Soecification

The acquisition of a compiler system often represents the

most critical aspect in the development of a successful

software system. Heretofore, virtually no guidelines

were provided for buyers to facilitate the specification

of a new compiler.

Software development involves many considerations. The

selection of the appropriate lancuace tools in the deve-

lopment process is not only critical, but will have major

effects in terms of cost, development time, efficiency,

portability, ane ease of maintenance and modification.

Minimizing programming errors often depends a great deal

on matching the comolexity of the application with an appro-

priate programinq language. ?'any variables should be con-

sideree when deciding on the features of a particular

system.

The charts on the followinq vaqe present the major areas

of concern when soecifyinq a compiler. Each item is then

further delineated in subseuent sub-charts. P.11 items

in the sub-charts are discussed as to their relative merit

in the acquisition of a compiler system.

1-



There is a myriad of facilities and features that a com-

piler system m~ight vossess with respect to a intodern corn-

puter system. It is assured that the specific require-

vnents for compiler systems in different installations are

widely divercent and based on tle best utilization of -1

available resources for particular applications.

The major areas of consideration in the specification of

a higher level languaqre compiler include:

Co!"niler Costs

Lancuage D2efinition

Coniler Options

Fxtensibility

Transferability

- Comouter Fnvironment

5Pystem. Interface

User Profile

rPocumentntion

Schedule and Installation

Accevtance Testa

m~qintenance and Support

COMPILER SPECIICATTON - MAJOR AREAS OF CONCERN

The charts on the following nages further delineate each

of the above major areas of concern.

1-2



1.1 Corpiler Costs

Of primary concern in the acquisition of & compiler is

the "actual" dollar cost. Since the cost associated with

a compiler system involves the original investments as

well as other significant on-goinq expenditures, the

topic of "actual" cost becomes increasinaly comnlex.

Usually, the compiler procuring agency is only concerned

with the initial "out-of-pocket" outlay. The following

chart and subsequent explanations may help the compiler

specification writer to develop insights into "actual"

compiler costs. Actual costs include:

Purchase Price

Cost of Comnilation

Cost of Execution

Level of Expertise

Pesource Utilization

Resource Acauisition

Maintenance Costs

Enhancement Costs-Options

Training Costs

Pe-targeting Costs

Re-hostina Costs

COMPILER SPECIFICATION - COMPILER COSTS

1-3



9 Purchase Price

A major consideration in the acquisition of any item

is the purchase price. Although the purchase price is

almost always not part of a compiler specification,

it is often specified indirectly (in terms of man-hours

and job classifications). Virtually all items delin-

eated in the specification charts have a direct bearing

on the purchase price.

The compiler specification writer should investioate

the relative costs and benefits of the features under

consideration. This will assure the most effective

usage of the available resources. The relative merit

of a special or "extra" feature must be analyzed in

relation to its added cost in order to maximize the

utility of the compiler system.

It is very common in the development of a compiler system

to have progress payments made as the contract proceeds.

This is usually due to the large expenditure of labor

and computer time often necessary to complete m compiler

project. It is hiqhly imorobable that any software

organization specializing in compiler implementation

would he willing or able to work for lone periods with-

out financial reirbursement.

1-4



since compiler system contracts are usually fixed price,

as opposed to time and materials, it is advisable to

identify milestones at which point partial funds might

be made available to the developing agency. Progress

payment provisions relating directly to partial product

deliverables have to be carefully constructed to insure

that the balance of funds flowing to the vendor is

anproximately equal to the value flowing back to the

user. In this manner, project termination will not

create major hardships for either party.

Specific items include:

U Se Pasic compiler (software) purchase price

9 nption prices

o Aevances

e Milestones

o Cost of Corpilation

A major cost that is usually iqnored in the specifi-

cation of a compiler is the cost of compiling a prograr.

Individual compiler implementations of the same compiler

specification can have vastly different costs associated

with the translating of a proaram.

Part of any compiler specification should contain a

maximum cost per specified test program. The test

1-5



programs should represent a reasonable set of tests in

terms of expected features used. nf extreme importance

is the compiler's operation during large compilations.

Often a compiler will perform well for small modules butK
will run slowly when reaching certain "intrinsic limits."

Too often compiler buyers have neglected this area and

have received a compiler that met all specifications,

vet was of little practical value.

Snecific items include:

* srall program costs per statement

* large program costs

e medium or average costs

9 overhead costs

e Cost of Fxecution

The code generated by a compiler and the tools provided

to improve the efficiency of the code can be vital in the

overall effectiveness of the compiler systems. A compiler

mystem is merely a tool to be used in the development of

software.

mhe intended application of rrograms generated by a

compiler coupled with the expected life of the compiled

program (number of times to be used) can often make

? 1-6 :



!

this aspect the most critical of all cost items. Depending

on the varticular aplication, the erudite writer of

compiler snecifications should include some minimum

acceptable ratio of compiler-code-generated execution

cost versus the execution cost of an identical machine

language proarayn written by an above average proqrammer.

It should be noted that the term execution cost inplies

not only execution time, but also computer resources

utilized by the compiled program (memory, disk, I/O

access, etc.). This may be handled in a small, medium,

larae proqram fashion as for compilation costs. Specific

items of concern are!

" CPU time per statement or program

* core usaae

" 1/0 access time

" wait or dead ti-e

" disk storage

• tape drive mounts

In large computer systems there will often be a machine

unit cost of execution formula which may be used for

computing total cost. This may be quite complex

and is left to the specification agency discretion. A

prime example is the OS 370 P1eP system.

1

1-7



0 Level of Expertise

Another often neglected cost item is the "quality" of the

compiler system as a rajor determining factor in the level

of expertise required by users. The relative time it takes

to get a job done is usually directly related to the level

of the lanquage (assembly-higher level-snecial purpose)

and its features.

If a junior level proqrammer can accorplish the productivity

of a senior level programmer because of the compiler

system's lancuaqe and features, then the dollars saved

* become a rajor cost factor. The quantitative analysis and

relative merit of new features is very important to the

future costs associated with the compiler's usage.

* Pesource Utilization

It is not at all uncommon for the vendor to require the

usaae of resources supplied by the procuring agency. At

a rinimum these resources will probably include the

participation of staff in both the design concept and

during the compiler acceptance approval cycle.

It is quite common for the buying orqanization to supply

machine time for the development, checkout, and installation

---



of the compiler system4 In addition, other resources are

often provided in terms of office space, telephones,

secretarial services, keypunching, etc. Thus, it is

necessary to stipulate what types of resources will be

supplied by the procuring agency.

If the maximur level of resources is exceeded,

then the specification should state the consequences

(charges). This will insure that excessive

resource utilization will be minirized by the vending

oraanization.

On the other hand, very stiff penalties may result in

inadecruate testing, or non-optimized code generation.

Resource expenditures should be as liberal as possible

to insure effective, on-time Oeliveries. Low resource

costs usually may 1e obtainee by use of slow turnaround,

low priority computer usace and subseauent schedule delays.

mherefore, resource availability is also of primary concern.

e Resource Pcquisition

Tn some cases it may be necessary for the rrocurina

agency to purchase additional hardware to fecilitate

the Oevelopment or use of a compiler system.

L-
• +, 1-9



In general, the procuring agency must determine the

resources to be provided in advance of contract neqotia-

tions or even PFP preparation. Appropriate responses

should include a staterent of resources reauired in

addition to those listed in the RFP. Pardware items

most likely to be critical in compiler utilization are:

e Core storage (fast)

e User interface devices (printer, CRT, card readers)

* Intermediate I/0 (roders, multiplexors)

* Secondary storaqe devices (disk)

Proper allowances rust be -ade for these items to

insure a conpiler system which will be available to the

raxiimum number of users over a full range of applications.

* Maintenance Costs

The compiler specification should contain a provision for

vendor maintenance after acceptance. The maintenance

period should extend for the useful life of the product.

A heavily used compiler will become reliable within a

short period of time.

In this case, a front-loaded maintenance budget is

reco'meneed. In eeneral, the vendor should be required

to supply the first year's maintenance as part of the

1-10



compiler development costs. A typical maintenance budget

is:

Years After Acceptance Percentace of Develonment Cost

1-2 20%
2-Life of the Product 10%

This is subject to the choice of vendor (reputation and

location), comnplexity of the language/project, time

schedule for imnlementation, and previous experience.

' Enhancement Costs-Options

The compiler PF' should explicitly require fixed price

*estimates for enhancements end additions to the basic

system. Items to consider include:

9 Debua packages

* Optimization routines

e Lanquaae extensions

* Training Costs

Initial procuring agency personnel trainino and education

costs should be included in the vendor proposals at a very

low cost. Training includes proper documentation of the

language, compiler usaqe and program listings. Additional

specifications for later training of other vendors/users

' I-II



of the compiler must be included. Too often, an agency

becomes dependent on a particular vendor for subsequent

acquisitions. Usually, this is because the acrenev-owned

compiler cannot be altered/maintained by other vendors.

The oriainal vendor must be required to accept responsi-

bility for training in subsequent installations as well.

e Pe-tarqeting Costs

The compiler specification must include provisions for

additional target computer implementation. 'he cost

proposals shoulO include vendor costs estimates for the

full implementation and costs for training of other

vendor personnel. 'he specification should require an

absolute minimum cost fo. re-tarqetina and concommitant

advanced technology. The code generator or target

dependent rortion of the compiler should he one of the

least exnensive to duplicate.

e Re-hostinq Cnsts

Pe-hostinq is the process of moving the compiler system

to a new computer without changinq the result or outout

(target programs). The vendor should be recuired to

prepare cost quotations for every major host system to be

used by the procurinO a"ency and major civilian companies.

1-12

1-12



The re-hostinq costs should include eatiynates for original

and new vendor inpleientations.

1-13



I

1.2 Language Definition

The most important Part of any compiler system is its

ability to properly translate each specified language

form to obtain the eventual execution of the compiled

program. The specification of the features of a compiler

lanauaae should be as clear as possible in order to avoid

any misinterpretations.

several mathematical languages have been developed that

facilitate the specification of compiler features.

Pelatively accepted, mathematically oriented languages such

as Backus Nauer, already exist for this purpose. In

addition, it is also advisable to have a brief English

explanation of the various language components. The

rmlarity of syntax and semantic representation is of

utmost importance to the compiler implementor as well as

the eventual user.

In order to eliminate any ambiguities or misunderstandings

the definition of a new computer languages' format must

be defined as clearly and concisely as possible. Meta-

linguistic syntactic definitions have been developed in a

complete, efficient, and concise form. Tn fact, the

success of these definitions can be judoed from the

1-14



diversity of lannuage descriptions that have been

developed from a met-linguistic notation.

The lanquage in which the compiler is defined is terned a

meta lanauaqe. The meta lannuace must be uniquely

distinguishable fro, the language being described. The

following chart lists the items of a corniler lancTuage

which should be defined in both a meta languaqe as well

as in a prosaic manner.

If the lancuage to 1e specified already exists in other

environments, then it is highly likely that a formal

reta-linguistic mathematical specification is already in

existence. Ponular lanvua7es such as FnRTRV, COPOL, BAIC,

ALMOL, Pill, and JOmIAL have all been defined via viaorous

notations. Aspects oO mont lanquaaes can he cate-orized

ane describee as:

Syntax Characteristicq

-* Declarative Statements

Control Statements

Subroutine Statements

Processing Statements

Allocation Statements

Input/Outnut Ptatements

Formatin Statements

Corpiler Directives

1-15

A L .. . . . . . . . . . . . . . . . . . . .. . . . '. . . . . . . . . . . . . . . I . . .



9 Svntax Characteristics

The specification of a compiler would be meaningless with-

out a formal description of the lanquaqe to be translated.

The syntax rules for the followina items should be

included in the specification:

o Character Set

e Syrbol Construction

* Keywords

* Statement structure

e Cornents

9 Statement Termination

e Variables

* Logical Operators

* Relational Operators

9 Arithmetic Operators

* Erpiessions

* Literals

e Functions

a Constants

o Declarative Statements

The declarative statements specify the variables that

will be used in writing a program. Often the declara-

tion statements include information that describes

~~1-16



attributes of the variables.

9 Control Staterents

Control statements control the program- flow. Transfer

statements, conditional statements, switch statements,

iteration statements, and decision table statements

are eyarples of control statemients.

9 Fubroutine Statem~ents

Subroutine statements provide a means of motiularizin7 a

nroqrar. U1sually these statements include facilities for

declaring a subroutine, referencing P subroutine, and

exiting a subroutine. In addition, subroutines often

have the capability of passina arguments.

e 7Assirnment 5Staterents

7Assiqnrent statements provide a means of assignina

values to variables.

* Allocation Statemnents

Pllocation statements control the olacerent of

variables in memory. in addition, allocation statements

eeclare the dimension of variables. In some lanquaqes

the declaration statements perform some of the

functions of the allocation statements.

1-17



9 Input Output Statements

Input output statements provide a means of getting

information into and out of a computer. The capability

to describe the devices is included in some languaqes.

* Formating Statements

Formatinq statements describe the format of data to be

read into or out of a computer.

-
?i

a

1-1



1.3 Compiler options

There are a myriad of capabilities and facilities that

a compiler may possess or influence with respect to a

modern computer system. This guidebook assumes that

compiler requirements among different installations are

widely divergent. This is especially true when selections

are based on a maximum utilization of available resources.

The following chart and subsequent explanations define

numerous capabilities and facilities which improve the

utility of a compiler system. Assignments are made for

expected dollar benefit versus anticipated costs of each

compiler option. This eases the choice of items to

include in the specification.

1-19



Compiler Types

Subsets/Special Versions

nptirizations

V'easurerent Tools

.ebu Aids

,Test Aids

Docurentation Aids

Cross Peference/Dictionaries

Surce Libraries

Coirvools

"ext "aintenance

Directives

Detailed Diacnostics

Peformatters

Standard Verification

Fource Listinqs

: Partial Corpilations .

CnMPILFR sPFCIrICATION - COMPILER OPTIONS

1-20



e Compiler Types
The purpose for which a compiler will be used and the

intended applications for which proqrars will be develoned

all have an impact on compiler type.

* PATCH

PATCH compiler requires all input files to be sqprlied

before corpilation. This is the most oorular iiplemen-

tation type for corpilers. It provides for t~e most

efficient means of mini'izing the cost per compilation.

* CONY7EPSATIONAL/INCREM4VTAL

The CONVFPPTIONAL coimpiler communicates with the user

throughout the translation process. The user can

continually riake correction/modifications as the

comniler translates/executes the users' program.

conversational compiler is usually very effective for

the development of a program where compilation cost is

not very imnortant.

e INTFPPPPTIVF

An INTERPPFTTVF compiler performs the execution of a

nroaram directly rather than preparina an object version

of the program to be executed later. An interpretive

compiler usually generates less efficient object code

1-21



but T"iniirizes cornilption tim~e and re-targetinc tasks.

* 5ubets/crecial versions

~he nriimary 'Totivations for subsettincy Are cost and tire.

C1nbsets perr'it s"-aller com~pilers %.hiech can he developed

i'ore econoT'-icelly and/or in less tire. It is important

that a subset ),p a "prorer" subhset to insure upward cor-

patibility.

often a coi-niler of an Plready existina language is

srecified as A proper sulbset nxcent for severAl 'snecial'

f ?,-tu rps . These ' subset vprsi#cns' specinl feiturps -ray

be rore costly (in terrs of *orpAtilnilit,? and. transfpra-

1bilitv) t)han the benefits the" vrovide.

* ptjrizpticn

O'yer the last tw"o aecades nurerous techniaues have bePen

eeveloned to irnrove the officjentv of co'~e qenernteO

byv cnilers. Usually these nntinization features are

diviacd into local and alobal ontirization. Th e cost

associated with develonina optirization facilities for a

corpiler can usuall"f be divi~eO into two areas: edditional

eevelopy-ent costs andi more costly cornilation.

1-22



Normally, if sophisticated optimization facilities are to

be developed, it is advisable that they be conditional and

selective. For example, it is not usually necessary to

optimize application programs during their development

cycle. In adlition, numerous studies have shown that

small portions of a program usually consume the majority

of a proaram's execution time. Hence, optimization of

selectee areas usually proves the most effective in terms

of cost/benefit ratio.

There are often several alternatives to expensive optimiza-

tion facilities. These include measurement facilities

which pinnoint areas to he optimized and facilitate

interfacin, to assembly lancuage proqrams. Each

optimization facility should be weighed in terms of cost/

benefit ratio.

Local optimization features are usually less expensive

than global optimization facilities. The following is a

list of potential local optimization facilities:

* Reordering of the evaluation of an expression

e Efficient use of reqisters and memory

* Common exiression elimination

* Redundant statement elimination

* Dead variable elimination

1-23



e Factoring (eg. A*B+A*C to A*(B+C))

* Constant evaluation

e Tetparcytina of jurnrs (Pat. CoTn L2 I-cnpe CVV)Vn 13

if T.2 contains a (r"'rO L3)

9 r'lirination of reduindant stores

* r'fficient "tilization of tarrtet rachine irstructions

Tmhe follov'ina is a list of aiobal ontirizatinn facilities-

9 low analysis - this is usually a very costly

opti-ization techniquie. Its benefits involve the

re-ordering of Rtatorents are! the clirinition of

unrecesparv stmterents. "pnv of thase benefits can

Also be attained through rroper proqrprrina techniraues

by the user.

e vlinntion of assianint a vparialelc to an exrression

~ j that is never used.
* rpsP rerister versuis active recrTister usacip.

e Code redistribution - -ovinr code segrents to a

nath tiat elininptes reclundant execution.

o MeAsurerent Tools

",leasurerent tools are an invaluable asset in irprovina the

perforrance of a corpiler syster. There are three basic

areas of potential imrnrove",ent that Tre urpy"ent s-sters

can he used in a corniler system'. These are:

1-24



e Measurements to improve the language itself.

* Measurements to improve the performance of the

compiler's operation.

* Measurements to improve the performance of programs

that have been compiled.

Usually measurement facilities can be built into a

compiler at a fraction of the cost of optimization

features. It is recommended that these facilities be

both optional and selective.

The gathering of statistics, such as features used:

combinations of statements: and frequent user errors

provide valuable insights to language designers in I
terms of improving the utility of the language.

| ~ Statistics regions help pinpoint areas to be optimized.

* These statistics can point out vital areas of the

compiler/application program that should be optimized.

* Debug Aids

One of the major purposes of a higher level language is

to simplify the cost of developing and maintaining programs.

Debug aids are indispensable tools in the checkout of new

1-25



programs/rodifications or in the location and eventual

correction of problems. The following is a list of debug

aids:

* Corrections

The ability to modifv object nroara-s without

havinq to recompile saves both dollars and time.

F Snanshots/Dump

-he displaying of variables in a forrat tat is

compatible with the language is very beneficial.

* Item/Location ,'odification

Tbe facility of being able to see a variable's

modification at a particular location (routine,

statement number) is extremely helnful in the

checkout of a proaram.

e Traces

The display of sequences of Program instructions

(especially symbolically coupled with item modifi-

cation) is useful for efficient proqram checkout.

* Conditionality

The ability to invoke the above features conditionally

is a very powerful prograw development methodology.

L

1-26



* Test Aids

The generation of test proqrams to verify the "correctness"

of a set of proqrams is a major consideration when develo-

ing a system. In the last decade tools have been developed

which aid the qeneration of test pioqrams.

Intrinsic to these tools is a flow analysis of the program

to be tested. Since compilers must make P like analysis

durinq global optimization, several compiler systems now

include the preparation of teqt proffrars as an inteqral

part of the system.

, Documentation Aids

The facility for effectively interjectincy proqrarm comments

into the source proarar is of utmost importance. It is,

however, an intearal part of the lanquaan definition anI

not an option. The compiler may be used to enhance this

feature by specially formating printinc of comments,

automatically indenting loop structures, and summarizing

classes of variables and statements used. ?'any of these

aids are traditionally sunnlied via the cross-reference

facility.

1-27



e Cross 1eference/Tnictionaries

'l4ost coympilers will output an alp'habetized svynbol table

(dictionary) at the conclusion of eAch nodule. The

dictionary provides an easy-to-use reference to the

tvne And value Associate6 with each user declAred variable.

A cross reference provides a means of identifyint where

n-Ach vmriable is referenced in A narticular rodule. This

facility is a very irnortant asset in the development and

nairt-inance of nroarams. Tn lanauaqes such as .TOVT?kL the

scope of each variable is also of utmrost imrportanne and

* can be further ernhasized here.

o source Libraries

nften, an annlination will contain a set of progravs with

identical source statem~ents (usually, declarations). It

is both imore econorical and less error prone to he able

to reference a set of source from a single statement

rather than including the save source in numerous

y-o'ules.

*(Oirnool a

rom~nools rrovien a means of eiatherinz coy-non variable

eefinitions into a sinclie file. cewmponis usually differ

1-29



from source libraries in that they have been nretranslated

and exist in a more readily accessible form.. Usually a

language that facilitates compools has specific rules

regarding undefined variables in a program and their

accessability from the compool.

e Text Maintenance

Text maintenance provides an efficient means of maintain-

inn and modifying a source proyrar. Nearly all major

computer systers already contain text editors and source

maintenance programs. If neither of thpse are available,

the compiler system should contain a facility for up-

eatina source files.

9 Directives

Directives provide a means for the user to guide the

corpiler in performinq a particular compilation. The

utility of the directives depends on the application to be

perforree and the function of the eirectie. The

following is a brief list of some of the directives which

might be incluee4:

m Macro - A set of directives v.hich perrits the user

to define noe facilities in terms of existinr

facilities. This facility can make the language

1-29



irore flexible to future neees (i-ut ray cause

future corratibilit' Prohleirs).

*Conditional - A~ set of directives that determines

which stpterents are to be corpiled. This allow.s

t source nrcocrar" tn Adant to riifferert environrents

bAsed on nreeefired conditions.

e ()tivnization - set of directives allowing the

user to snpecifv which areas to optirize and the

ratio of sreee versus space consilerations.

e 'Rorle - A qet of eirectives w.hich influences the

tyre of node to l-e cenerated (ect. whether or not a

sub-routine is to 1-; re--entrant) .

o n~etAiled Tiaqnnstics

"!,e level of inforratinn provi'aet by m cor~piler for error

r-rssas is extreneJ"! i-portant. The ability of the

corniler to pinnoint the reason for the error is vital to

the efficient deireloprent of softvare.

Tt iq inadivisable (unless o~ther constraints prevail) to

have the compiler lump numeroun error ressages into a

sincale catecyor,.,. Tt is Also useful to hmve a diaanostic

sur-ary at the conclusion of each roclule.

1-30



9 ReforvtAtters

A reformiatter rearranaes the display of a source prograr.

This is useful if previous or present programs are beina'

developed that do not use any standardization in terms of

source arranrer'ent.

* * staneard Verifications

Often a den'artynent w.ill develop a set of "good vrogranwiing

standards." *Included in these standards might be

structured nrofryring concepts, variable identifier

rules, etc. Tt is beneficial to rnaqement if the

compiler system contains facilities for monitoring~ and

renortinT any excentions to the standarels.

* Source& Listincas

A compiler will usually list the source prorar it has

translated. It is often helpful if the user can

optionally obtain an Assembly listina expansion of his

source. If an asserbly listin" is provided, then it is

extretmelv b-eneficial if there is some direct correlation

hetween user defined varialbles and the variable na-es

generated by the corpiler. This mrakes the asserbly code

considerably mrore readable. In addition, such things As

1-31



loc~tion, object andi sequence nur'±ers shoulce h-e incluceed

to aid the nrovrarmmer in dvolopina/Traintaining his or

her nrocrar. Tt is Also usually beneficial if the

Assembly listinq is interspersei w.ith the corpiler source

listinct. "itles, O~ates of cortpilation, proctrarrers name,

and similar items should also be provided in the listing.

*Partial CornilAtions

7t 'artial corpilation faCilitV Allows the proctrar'mer to

control the tbehavior of the cor'riler. often a compiler

is ir'rlementei as rultiT'le rp'sses thrnlivh a -nurce file

(or An intermediate lancuaqe translation of the source).

e eveloper of A net' -rocri- r-A only tie-sire a listirc! 0l'

his source and any sw'ntax errors thAt eyist. Tt is rftpn

nonsihile to Accornlish this task w.ith a -Iraction of the

tire/cost norrally required Ifor a conp~lete corpilation.

1-32



1.4 Eytensil-ility

A corniler is extersihle if it can easily he modifiee

to include new features. Tn generAl, A coirpiler that

is irplemented usincy "good proarpriincT practices,"

(structured prograrrina, top-dov-n aesion, srall modules,

etv.) is usually repdi)y rodifial-le for future require-

-ents.

If e new lancruaq' is baina im~plerenteL4, or an existin-

language is expectpd to he modified, it is advisahile

that the specification ircludle an "open-end" Oesiqn.

".he followinT chart depicts iters which are essential

to a compiler system's extensibility:

woodularizAtion

"'or-down Pesinyn/Structured Proqrprrinc

0inirnal t'ser Postrictions/Coy-piler Liritations_

ParayreterizAtion

COP.'PIT.rF'Pr~CITCATfl'? - F"'FPILTT

e modularization

-'he idea of breAkira a proaramrinT system into trAll.

roreulas not only benefits program checkout and maintenance,

but it also makes the corpiler easier to modify for future

1-33



requirerents. A complex corpiler system requires numerous

functions. Tt is quite conceivable to fine in eycess of

150 eistinct modules for a well structurel compiler system.

Tt is certainly advisable that the specification contain

A staterent that the coi'niler consist of multiple modules

and that no module should be more than some finite

nurber of statements.

e nnen-FnO nesign

when desianing a corniler system, data structures are

dpvelonee which are used to retain such information as

variable type, variable dimensions, nare scone, error

directories, cross references, Pn6 literals. !n addition,

internal translations/rarsing of source often build

interiPediate lancuage forms with character strinas

replaced by nureric representations.

Tt is crucial that the corniler eesigner "leave roe," for

future entities if extensibility is to be meanirafil.

For exarple, assume 3 hits are allotted throunhout the

interrediate languace to designate type of operation.

'urther assume the followina eight entries already exist:

1-34



Pinary
rator presentation Meanin

+ 000 Ade

001 Subtract

* 010 Multiply

/ 011 Divide

& 100 Logical Pnd

101 Logical Or

110 Logical Not

il Logical Exclusive nr

Now assume that the usagP of these three bits is

scattered through nurerous modules. Tf it later becomes

desirable to add several ne, operators (ea. exponentiptior,

relationals, etc.), it might he extrerely difficult. This

would especially be true if the three bit item was con-

tained in a structure which had no additional or unused

ispace.

e Top-Down Desicn/Structured Program

top-down design usually allows for the simpler under-

standing of the basic flow of the syster. Coupled with

structured nroc~rar-rina, the basic logic of the syster

is not only more maintainable but also easier to roeify

for future recuirerents.

1-35



e Minimal User Pestrictions/Compiler Limitations

Often compilers are implemented with fixed limits in

terms of items such as the nurber of symbols, number of

records per source statement, and num?-er of parentheses in

an expression. Tlsually these limitations are a result of

poor design techniques -nd/or inadequate use of the proper

data structures.

Stacks, circular queues, variable length arrays, pointers,

and generally well desiQned data structures will minimize

the number of compiler limitations and, hence, user

restrictions. Mininization of restrictions is very

crucial to corpiler extensibility.

9 Parameterization

Parameterization is a method whereby a program may easily

he adjusted to accept new proTramn, hardware or system

attributes or restraints. Tt is extremely important that

values which define arbitrary limitations be parameterized.

The compiler implementation languaqe should definitely

include a facility for parameterization. The compiler

specification should require the usage of this feature.

Pee the following section on transferability for a more

detailed discussion of parameterization.

1-36



1.5 Transferability

Tr~rserailitv is a m'easure of the ease of !"ovinT a

com'ruter rrocqrarn fror ne 00rnutinrT environm~ent to

another. I'ransferal'ilitv with respect to a coi'npiler

qlystpi" can be divided into two 1r,%jor areas: the m~ovement

of the compiler to a nei*' host co-puter, and the gene-

rAtinn of ntject coee for a eifferent tarvet corputer.

These two areas represent su)7stantially different

nrohler areas, nlthoucrh there is consieeral-le overlap

involvee with Y-oth. Tf it is intended for the corpiler

to onerate on rultirle hosts or more than one tpaet,

then the snecification shoulO contain a future ortion

rerniirine- the desirrd tAsk.

A~ usual jude-~ent of the desireeahility of any tra:gfer

effort or techni~ue is its cost effectivene'ss. rpeci

ficallv, the ficure of r~erit is the cost per trarnsferreO

unit. T~he transfer is corplete when the end-user is

as satisfieI with the cornilers' oneration as he vas

)hefore the transfer.

lrhe follovinc chart and su ,sevent eynlanaticyns help

depict areas of corsirleratiron Involvinc transferability'.

1-37



Compiler Type and Rtructure

Ipplementation Language

modularity

Paraveterizption

Coe Constraints

rrulators/Firmulators

COPTLFP F CIrICkICON - .rNPrFPpPTLT"v

S Compiler "vre and Ptructure

P variety of basic conniler structures exists. The

tvne of structure has a trerendous hearing as to

future adantation to new taraets.

Numerous efforts have been initiated to enhance

corniler transferabilit,,especially in the area cf auto-

ratic corpiler ceneration systems. Ouch concepts as

reta-corpilers, svntmx table driven comnilers, and

racro bAckend processors have had only minor successes

in the aeantation of a corpiler to a new tarcet rachine.

mhoie that are successful, in terms of inexpensive

transfer cost, have alrost always proven too costly

in other arp~s, (i.e. noor code menerption, extremely

long compilation tire).

1-38



less nopular method involves co-nilers which cgnerate

interpretive code- With interpretive comilers all

.that is usually required is the irnlerentation of a

new set of run tie routines. The only rajor drawbacY

is that proqrans will execute considerahlv slower.

They will, however, corpile faster.

Ps previously rentioned, it is strongly advisable to

modularize the irplementation of a compiler system.

Tn aedition, a corpiler's modules can usually be

searented into the folloin narts:

* Proaram Control -- controls the overall flow of the

comhiler Ane calls the proper routines

basoe en the statements poina rrocessee.

e Parser--"ranslmtes the hicher level source into

* an intermediate laneTuaae.

e Fyrression valuator--Polishes expressions so that

they are more coneucive to code generation.

e Optimizer--Scrutinizes the intermediate lanauacTe

to minimize number of required operations.

* Code (enerator--ranslates the intermediate source

to the aprropriate instructions of the

taraet machine.

1-39



¢I.

Tf a comoiler is well structured, the only portion

which should have to be re-implemented when transferring

to a new target is the code aenerator. Tf a future

target is c major consideration, then the specifi-

cation should require well structured programs.

Implementation Language

Probably the singularly most important factor in deter-

mining the degree of transferahility to a new host is

the implementation lanauage. The following is a brief

discussion of several implemrentatio,. languages.

* Pssemhly Languaae

This is by far the least transferable (to a new.

host) of any_. i- 1 c-ntAtion lancruace. Its major

advantage is that the compiler will operate at

raximur efficiency (assuming good programring

techninues).

* lncro Lancuage

Assuming the new computer(s) has a macro processor

that facilitates the implementation of the macros

used to implerent-the compiler, then this approach

nrovies a very economical method of movina to a

new host. The disadvantages involve the compiler's

own translation cost and the fact that mpcro assemblies

are usually very -.low.

1-40



o Systems Proaraniring Languace

Often compilers are implemented in a special higher

level language. Usuallv these lancuaqes are subsets

of ALCOL like languages. The cost of transferring

to a new host is then usually the cost of rewriting

the code generator of the systems programrina language.

" Popular Piqher Lever Lancuage

Pince nearly all major computer ranufacturers suprort

FORTPAN, COPOL, and possibly ALnnL and PI-i, the

usp of these lanauages provides major advantaffes

if a new host is of primary importance. In aedition,

these l~nqua-es rrovide other benefits such as ease

of transfer of programmers alrealy knowledaelYle

in the implementation language. The major disad-

vantacye is the inefficiency of the compiler's oper-

ation, both in terms of speed Ana resource utilizetion.

" meta Compiler

There now evist numerous compilers which accept a

reta-linauistic definition of a lanauage and produce

a compiler system. The major problem that exists in

this annroach is that alnost always the corpiler is

very poor in resource utilization (spice and speed)

as well as poor in terms of cuality of code generation.

1-41



o moiularity

I-n4.Art is p Ver-n~l wAy of -lividlinq A nroorar into

a nu!"Iher of Rut-units. Fich stibinit should hAve a well

Opfinad function ?ne relAtionshin to the rest of the

nrrerap'. m1i-re -r(, vell knon arvAntAcyps in rnularity-

n 4C ri-mrv ir-rtinre is that those nrerr fuinctinns

-'hj-11ii nee(' the i-nst nrrormaYer Attcntion unon

transfmr can often "_ isolated ane functiorplly iden-

tified as Iistinrct rodules. -he n-odules, if orcpnizeO

Andl dOciinenteO rronerly, can )-se workel on with little

rpfpvrncp to, o~r inte-rference with, the rest of thn

A~ ess-ntiAl Pspct of these nodules is their isolation

4rmo thle rest of tl-eP nrocirAy. rAch section should h-e

a qprvipnce of 7-ro(-rPrninrr lAneiAn staterents havincn

a vell T-rretd start -inA end. "he function of thre

rnodule and its interfa-ce .7ith the rest of the proaran

sh ouldl Ye sinrie mnd' well "ocurented. A motlel

nprfor-inc se ?rrl closplt related functions rnav hat.?

s&-vrNl entry -oints. Vo7over, onp -rtry rooint is

usuall,. hetter practice.

A corniler svstn whpre trinsferalhility is P najor

cons ideration shoulel specify that the nod-,ules- which

Pre machine 4e-ondlent he isolated to as fpw. rodules

1-42



as possible. The specification should also reauire

arpronriate Aocumentation that describes which modules

need to be channee.

* Paranptarization

Parameterization is a method by which a source program

may self-adjust to a program, hardware, or system

modification. Fcre numeric or symbolic items in the

proaram ray require alteration if the same function

is to be performed in a new environment. These values

ray be written into the code exnlicitly or they may

be parameterized. In the latter case, symbolic

variables are set to the annlicatle values in an ini-

tialization rhase of the assemblv/corpilation. The

values chosen ray be directly, initialized by programmer

codinq or they may be set up or calculated by the

lanquage processrr.

Tf the value is written in by the programmer, it should

be in a well marked statement, with all such statements

collected in one place. The documentation for each

value should be exolicit in how and when a nev value

is to te determined for the parameter. if the value

is to be corputed, the computation rust be checked

out for a rance of values.

1-43



Althouah a transferred procarar usually perforrs an

-. unaltered functicn on the new m~achine, narar'eterization

mpv he user1 even m~ore extensively w~hen the proarar

-* function is alteree euring transfer.

Par,?reterization req~uirements Oepened on the Oetails

of the -3rnor~rs involvee. rach actual value in the

source codle -ust heP considered for nrretprization as

it is h-eincq written. If the value and thp represen-

* tation of that vAlue nre ineependient of any reAsonalhie

charc- in -achine qnnlinAtinns, scorne, or lpncuaqe,

or if the nrnarairr'inq lantquAne Ooes not n'emiit a

* sqvr~'olic valve in that context, then narameterization

does not arwi.

Tn anneral, over-para-a~terization is rarely a rprobler,

esneciilly in the assezrhly or comwpilation process.

-hus, the cost of rarareterization is nontrivial only

if the looic of the nroaran or usage of the languageo

rnt h-.e pervarted. The value of para'-eterization, on

the other hare, can h-e consirderab-le.

*Code Constraints

ProqrAr transferalbility can he areaitly Pn ,nced 17y

avoidinar code th-at is !if fictilt to trAnsfer. rind incr

Ard uising alternative r-odps, hni.ever, dlos involvf%

1-44



additional pronra'minq costs which must be measured

against the benefits obtained.

Wor higher level languages, the prirary code constraints

of concern involve the avoidance of language features

which are apt to be rissincv or altered, or which will

give different results when compiled on the transfer

target.

The lancuaae features rost likely to be missing or

different in other compilers are the language extensions

and the expensive or little-used standard features.

Unless a language was specifically extended to suit

an a~nlicption, use of extensions can be avoided with

only a lirited loss of efficiency. In those cases

where the standard lancuane is inadeauate, the unusual

usaces should be isolated in modules for recode.

Aside fror subsots and extensions, two things in ceneral

rakp code difficult to transfer - techniques that bind

to a narticular representation of data structures and

instructions, and those that hind to a particuler

sequence of opprntions. A binding technique, then,

is any usaqe that takes aevantaqe of, or is cognizant

of its own implementation. Vhen any portion of any

instruction is used as an operand, or when any address

1-45



i r

is used vhich is not completely symbolic, a binding

technique is being used. Program code may be cognizant

of operation sequences because they define a function

which must be reproduced when the proaram is transferred.

Program code which modifies itself has proven to be

bad practice for reasons of raintenance difficulty,

error proneness, and non-re-entrant properties. Recent

machines and languages have taken steps to render self-

modifying code both unnecessary (e.g. execute instructions)

and difficult or impossible (e.g. write protect). Higher

level language code does not directly allow dependencies

upon instruction representation.

Cenerally, unless the machine _ deficient in indexing

and other dynamic address functions, representation-

depentient code may be easily avoided. Furthermore,

resource conservation realized through ume of this

type of code usually amounts to only an insignificant

percentage.

Tor any particular machine, external data representations

correspond to predictable internal storage bit patterns.

It is seldor the case that those representations will

he equivalent over a variety of different machines.

If the external representation used does not correspond

1-46



to the function of the item, the internal representation

will become inaprropriate upon transfer. An example

of this type of code is character identification by

comparison with small decimal integers.

Similarly, packing several data iters in a word will

hind the code with respect to word size. P data

item may be split by a word boundary upon transfer.

For example, 3 items of 6 bits each do not repack well

into a If bit word.

Operation sequence and data representation constraints

can also be combined in ways which may seem of great

value but which definitely hinder transferability.

P nroaram may be dependent upon aspects of system

confiquration in ways that make it infeasible to

transfer the proaram to a system in which those

aspects differ significantly.

Those system attributes which become severe constraints

are usually either system resources which are heavily

used or devices which provide facilities not quali-

tatively present on the new s',stem.

Primary storage is likely to be the constraint most

often felt. Tf a compiler is written for a machine

~-1-4
1-47



with a large amount of core storage, it may be infea-

sible to move to a machine with less storage unless

the program was initially written with this in mind.

Similarly, comrilers often do not adjust well to an

overlay/nonoverlay transition since basic alaorithrs

ray differ (overlay processing often requires a file

pass for each phase, where this would be unnecessary

with adenuate primary storeqe). On the other hand,

large primary storage may have been crucial to

efficient operation of the nrogra, and it would be

wasteful not to usp it.

one approach to this problem, then, is to consider

(and document) primary storace size as a system

constraint precludin code and nerhaps desian for

transfer to a machine with less storage.

Similar considerations anDly to random versus

seauential access seconeary storaae devices.

In the area of innut/output, efforts must be directed

toward avoidance of explicit references to physical

devices which can permanently bind a proqran to a

particular confiauration. Proarammers shoul4 design

and code with logical entities such as the system

input device (rather than the card reader) or the

1-48



object output file (rather than the tape punch).
*1

Physical devices and their associated characteristics

(such as record length) must be parameterized and

isolated from the main body of the proqram as much

4as possible.

9 Emulator/Simulator

The development of an emulator or simulator that operates

on one host and emulates another is another means of

transfering a compiler to a new host. This method

is almost always an unlikely alternative considering

the major disadvantage of excessive resource utili-

zation on the new host.

1-49



1.6 Environment

The operating environment or computer system must be

well defined before compiler development begins.

Future systems are discussed in Section 1.5. The

initial environmental specification should be directed

toward two operational levels - minimum and capacity.

The minimal configuration for processing "average"

programs one at a time may be a milestone in development

and payment. The capacity consideration is the largest

or most (multi-programming) compilation(s) which are

expected in the application program developmental cycle.

This information affects several areas:

e Hardware acquisition and selection

* Compiler implementation

* Compiler transfer

o User base and profile

* Choice of operating system

o Programming capacity-size of source programs

A procurina agency which over estimates available core

storage, for example, may severly limit the size of

source programs and the number of users who may run

simultaneously.

1-50



Further areas of consideration are covered in Section 1.1,

Resource Acquisition, and in Section 1.7, System Interface.

d-



1.7 Pystiyn Tnterface

The ease with which a user can access a cor~piler file,

link cor-piler object modules, and re-run compilations

is of nara'-ount ir'nrtance in the specification of a

c-riler syster. "0 tool, no natter how crood, is

really useful unless it can be satisfactorily applied

within the systen.

Although somne asnects of this oroblem seem self evident,

they should not he left to the imaaination of the vendor.

The snecificitinn shouirl clear]"! stAte the If-sire('

systen interfaces. -he follor.'ing chart and s,seciuent

descri'ntions v'ill n-rovic~e rerreseantative specificationsr for systen interface.

14 Oneratint Pyster' rnterfaee

job Control TLanauace renuirerents

Interface with Syst1r Text Editor

nbject I-nc'uiee

Tnterface with Other Tnancraes

F ubroutine TLinkaqes

Pescurce Tsaae

COMPILEP SPECIFICATION -SYSTEM ITTPFACE

1-52



e (r'eratinT ! stpir interface

b' cormpiler interfaces vithn the operatinci sy'stpy- for

the followinc~ Tnjor task~s:

e "To be niver control to eyecutte

* To attain its share of resources

* To receive user input filps

* '"o transymit user outrput files.

Tt is Advisable that a corniler's specification incluees

clefiril-jons olf onerAtincy systen tasks to be used and

ineans by which it is to p~erformn the above tasks. Tt is

ml]!o advantacreous for the interface to the operating

*systeim to I.,e e-entrally, located4 in the i-inir-al number

of rnOttles. r'or PexAmple, it is quite porsible to havrP

4our -o,4ules fnr Pach of the fnur fuinctionR Above.

) rcu'-nts to thp nordulps can hoc use for (ieterrininq

the necess,,ry tiasks to he oerforredl, cis ,hon eo.

* PuYroutine name: Control

runction: rntry point of cnompi~er. rlso incluens

ex~it to operating syster and any

necessary interface for attainina or

rregettinq systerm information (e.ey.

obtaininq date of rompilation, etc.).

1-53



" Subroutine !'ayne Pesources:

Function: Obtain internal storage requirements

for compiler.

Tnputs: Arount of space required.

" Subroutine Receive/Transmit

Function: Obtain/Output a record from/to

a user file.

Inputs: rile nare or number, buffer to

receive/transmit record, size of

record, mode (kFCI!, FBCDIC, Pinary,

etc.), Operation (Norral, rewind,

end of file, etc.)

In order to insure the desired operating system inter-

face, the compiler specification should contain detailed

descriptions of the above interfaces.

e JCL Requirements

"7early all rodern operating systems recuire a control

lanauage specification (job control) prior to jnb

subhmission. The "JCL" describes the nrograms to be

executed and the environment for execution. It is

crucial that minimal job control and knowledge of

operating system idiosyncracies be required for a

compilation.

1-54



VI

A user should not have to become a JCL eypert to have

his prograr translated. Tsually, onerptinq systems will

allow the invocation of JCL from procedure libraries,

thereby allor'incy a user the capability of rinimizing

his JCL requirerents. Tt is reasonable to include in

the srecification that JCL for all typical compilations/

executions be Provided to simplify the user's interface

Urith the compiler.

Interface with the cvster Teyt Fditor

Tf the compiler is part of a syster' which contains

a text editor, then the compiler snurce input files

should be in a forTat that can be used by the text

editors. nften corpilers will encode the source,

thereby reneerinc any system text editors useless.

* rObject Lancuare

A lenquage processor trAnslate- a source procyramn to

a form that is readily loadAhle into a corruter. This

gor= is callee an object lanc'uaqe. kn existing system

will usuplly contain loaOars and lin?,:ace e4itors that

process the object lancupqe. The comniler specifi-

cation should stimulate that the object lancuaae be

compatible with the eyistinci system's oject lanruaqe.

1-55



* Interface with Other Languages

If it is deemed desirable to implement a system using

more than one language, it should be rade rart of the

snrcification. Crompatibility ayong data structures,

object languages, and file structures will enable the

use of additional system languaqe processors. This

is esneciplly important with respect to existing

assemblers.

e Pubroutine Linkaaes

Vsualll a system will contain a standard rrocedureI for callinq a subroutine. This will include both the

activation of the subroutine And the passing of

araurents. Tf such a convention exists, it is strongly

0advisable that the snecification include this as a

requirement. Tf no convention exists (or if the

standard convention is deemed not worthy of consider-

Atinn), then the comniler snecification should renuire

a consistent method be used throughout the comyiler.

* Pesource T"sage

Pesource usace can be considered in two basic environ-

ments, compile tire an, execution time. There is

often a correlAtinn between expensive resource

L'



utilization cluring compilation of a source procrAr

anO econorical evecution of the source program, or

vice versa. V'odern softv'are technology coupled with

usuAlly available system, softw..are facilities (e.a.

overlay loaders, selective loading of object modules)

enafles cor'niler systers to rinirize their resource

requirerents.

Usually there is no major benefit in having the

entire comnpiler core resident during compilation.

Source corpression technolotry, with efficient usac'e

of data and file structures, allows larce comniler

systerms to operate Pfficientlv withnut usurpinq vast

reqources from. the svstem. If left unspecified, the

nre curin7 aciency rmv finO their compiler usini enormous

arounts of memory -a resources. hebythe compiler

systen becomes virtually a stanrd alone operation.

1-57



1.8 Vser Profile

The nuimber and types of users of a co'piler can have

large effects on its efficiency and performance rating.

Comnilers designed to yieet a wide rance of source

?roqrA sizes, for expmrle, -ay not produce the rost

efficient code or ma, require extensive link-loader

processina. P one-nass incremental system ray compile

quickly !hut execute slowly. A multi-pass, optirized,

coipiler ray compile slov'lv and execute rApidly, etc.

ei-ilarly, a comniler which is highly optimized and

capable of handlina larve source files is not efficient

for a tutorial situaticn recuirina fast r-srcnse and

many users.

'he Drocurinc aqency should identify!

• the prosnective set of users

9 proarans

* experience levels

" percentage of tutorial or "fun" co-pilations

(as in a university)

" life exrectancV or "procucticn" percentacTes

" real-ti-e renuirerents

" nu-ber of simultaneous users

" desired resnnnse tires

1-58



The user Profile sflPcified shoulc4 pro'vide the b~asis

for acceptance tests. Those tests which miost closelNy

resem)".le the user profile should~ corpile the Tnost

efficiently.

I-S



1.9 Documentation

Documentation is vital to the successful use and main-

tenance of any compiler system. A compiler system with-

out adequate documentation is worthless. A compiler

system's documentation can be divided into two parts,

internal (maintenance) and external (user-oriented).

Any compiler specification should include requirements

for sufficient documentation in both areas. The

following chart and subsequent descriptions will help

provide several insights into the types of documentation

that can be provided.

User Manual

Job Setup

Primer

Training Material

Compiler Limitations/Idiosyncracies

Diagnostic Description

Syntactical Language Description

User Flow Charter

Compiler Source Listings

Flow Charts/Prosaic Description/
Variable Descriptions

System Generation

System Interface
COMPILER SPECIFICATION - DOCUMENTATION

1-60



* User Manual

Every compiler specification should require a user

manual. The users' manual should describe the usage

of all compiler features as well as examples illus-.

trating their use.

* Job Setup Description

Often this can appear as part of a user manual (usually

an appendix). This describes how to compile and/or

execute programs. It should clearly specify each

step and the entire range of job submittals.

• Primer

if the language is new, or if it contains different

concepts, or if it is to be used by relatively inex-

perienced prograners, it is beneficial to have a

primer specifically describing these attributes.

e Training Material

In addition to primers, it is beneficial to develop

visual training aids and sample decks or terminal

inputs for a new compiler system.

1-61



e Compiler Limitation/Idiosyncracies

This item often appears as an appendix. Although

essential, it is too often missing from the available

compiler documentation or is scattered throughout a

variety of manuals. It is vital that all compiler

limitations/idiosyncracies be contained in an easily

accessible document.

* Diagnostic Description

All error messages should be contained in one con-

tiguous document (or a user manual appendix). The

diagnostics should include details of how and why

each error occurs and, if appropriate, what action

is to be taken.

4* Syntactical Language Description

This should be part of the compiler specification and

also be available to users. As mentioned previously,

a meta-linguistic notation q g. Backus Nauer Format)

along with a prosaic descri ion should be used to

specify all possible language constructs.

i User Flow Charter

The inclusion of a program which will automatically

1-62



generate flow charts for application programs may be

beneficial to users. The costs of this item must be

Weighed against the potential benefits. Usually auto-

mated flow charts of higher level languages provide

little more than a slightly better pictorial arrange-

ment of the program flow.

" Compiler Source Listings

It is essential that the compiler implementors provide

well-commented, well-structured source listings if the

procuring agency expects any type of reasonable main-

tenance or understanding of the programs. All good

programming habits, as enumerated by recent articles

(topics including structured programming, top-down

design, modularization, etc.) are beneficial to the

individuals responsible for maintaining or modifying

the compiler.

" Flow Charts/Prosaic Description/Variable Description

The value of technical documentation is extremely

difficult to measure. Brief synopsis of the various

compiler elements along with flow charts of complex

algorithms are usually helpful to the maintenance

programmer. It is essential that a technical document

1-63



be provided if the compiler source programs do not

contain sufficient comments describing every variable.

e System Generation

It is essential that a document be provided that

illustrates the methodology for symbolic modifications

to the compiler and then made to be operational as

part of a new system. The specifications should

always include this as part of the required technical

documentation.

* System Interface

It is also important that technical documentation

exists as to what system facilities are used, how

they are used, and where they are invoked. Often

a new system facility will replace an existing

facility. Unless documentation is provided, the

maintenance/modification to support such changes

becomes extremely complex and costly.

1-64



1.10 Schedule

The compiler specification RFP and vendor supplied

proposals should both contain an implementation schedule

with provisions for milestone payments. The actual

schedule time requirements vary tremendously with language,

compiler efficiency, implementation strategy and hardware

constraints. Large scale compilers such as PL/Il may

require more than one linear year to initial completion.

Less efficient implementations of FORTRAN and BASIC may

require only a few man months. The actual schedule will

be a judgement based on choice of vendor, language and

options. Typical payment/acceptance milestones in

development can be identified, however.

* Compiler design - detailed written descriptions of

compiler modules, intermediate languages, object

languages, parsing and translation algorithms to

be used. This is the basis for compiler documentation

and should be done first.

o Parsing and Translation - a demonstration of

successful generation of intermediate language from

a test source proaram.

e Code generation - demonstration of programs to

convert intermediate languages to relocatable or

loadable object forms.

1-65



a Initial Configuration - a first stage compiler

capable of processing simple language forms to un-

optimized link or loadable object.

* Optimizer - A demonstration of compiled code which

has been optimized and executed successfully.

* Self-compilation - if applicable--complete com-

pilation and optimization of the compiler programs

and subsequent use of the compiled object to run

additional tests.

* Performance Tests - compiler performance acceptance

tests.

* Documentation Package

* Training

* Agency TriAl Period - before final payments, the

user organizations should make exhausteO use of the

compiler and critique its performance.

* Compiler Modification - as a result of user tests,

enhancements and alterations may be required for

maximum use and efficiency.

* Maintenance Period - final developmental payment

should be made before the beginning of the

maintenance period. Maintenance may be defined

as correction of bugs not found in previous testing.

Changes to the specifications and enhancements are

not maintenance items.

1-66



1.11 Acceptance Tests

A vital part of any compiler specification is the

acceptance test. Usually the compiler implementor will

generate a set of test cases during the development phase

and the procuring agency will nod their tacit approval

as acceptance tests. Far too often these tests are later

found to be incomplete and subsequent usages of the

compiler cause the discovery of numerous problems.

Several existing languages have a set of tools that aid

in the validation of a compiler. The quality and

comprehensiveness of the acceptance tests are extremely

important in the initial acceptance of a compiler.

with the increasing complexity of the new compiler systems,

it is necessary that acceptance tests proceed beyond a

mere superficial state of initial debugging. The desire

to "just get it working" has prevailed in so many compiler

development efforts, that the initially delivered product

has often proven to be a future pandora's box.

The compiler specification should include statements

specifying the use of automatic program testing tools,

if available. If not, then the following chart lists some

of the tests which should be provided. It is usually

1-67



advisable that the acceptance tests be developed by the

procuring agency shortly after the design phase of the

compiler.

A great need exists for structured methods in the testing

of a compiler system. It is impossible to test all

possible paths in a complex compiler system. For example,

assume a compiler system has 25 different paths (a very

small number with respect to a fairly complex compiler

system). Using a computer with an internal speed of 1

microsecond, it might seem reasonable to verify all

possible paths, while in actuality, approximately 1000

years of computer time would be required.4

The following chart lists those items which should be

included as part of the acceptance tests. The development

of test cases for each of these items should be made part

of any compiler specification in order to assure a

reasonable degree of reliability for a new compiler system. 3

1-68



Syntax Test

Statement Test

Diagnostic Test

Accuracy Tests

Execution Test

Limit Tests

Special Feature Tests

Resource Test

COMPILER SPECIFICATION--ACCEPTANCE TESTS

* Syntax Test

A set of test modules that verifies the compiler's grammar

and handles all legal syntax structures.

e Statement Test

A set of test cases thak'verifies the proper translation

for each possible statement, and their use in conjunction

with other statements.

o Diagnostic

A set of test cases which generates every known compiler

error.. If an error can be created for a variety of

circumstances, then each possible cause should be made a

Ipart of the test.

1-69



a * Accuracy Test

A set of test cases to verify the accuracy of compiler

specified mathematical operations, functions, etc.

This includes tests that convert from one numeric mode

to another (eq. integer to floating to integer, etc.).

9 Execution Test

A set of test cases that verify that the compiler system

translates all possible statements to executable code.

* Limit Test

It is essential that a set of test cases be developed

which check all compiler limits. For example, a test

case that includes numerous identifiers, extremely long

symbol names, maximum parentheses, maximum loop nesting,

maximum continuation, etc. Often these test cases are

ignored and prove to be future bottlenecks.

o Special Features Test

A set of test cases to validate the proper operation of

all special features should he required and so stated in

the specification.

1-70



* Resource Usage

A "typical application program" should be developed to

measure resource usage. This includes both compile and

execution time resources. Often this test case will have

to include special hooks into the compiler so that statis-

tics (time, space, I/0 accesses) may be properly recorded.

This test case can be used to verify that the maximum

specification requirements (resource usage) are not

exceeded.

-7



1.12 Maintenance and Support

The acquisition of a compiler system should include plans

for its continual maintenance and support. Normally a

vendor will maintain a software product at no cost to the

procuring agency for a jointly specified time frame after

product acceptance. As mentioned previously, even if the

acceptance test cases are implemented with extreme care,

it is impossible to verify all paths of logic within a

complex compiler system. Therefore, the specification

should include plans for product maintenance throughout

the expected life of the compiler system.

Numerous programmers have used an existing "field tested"

compiler only to encounter problems after five to ten years

of compiler usage. The complexity of a compiler system,

and its critical importance as a software tool warrants

future maintenance requirements be established at the

time of specification.

As new problems are encountered in a compiler, it is

advisable to modify the acceptance test to include these

problems. This will tend to insure error free future

versions.

1-72



The utility of a compiler system is determined, in part,

by the ease with which it may be used, corrected, modified,

and updated. The following descriptions of the items in

the chart below enumerate the requirements for effective

maintenance of a compiler system.

Technical Documentation

Debug Tools

Skilled Programmers

Warranty Contract

COMPILER SPECIFICATION - MAINTENANCE

* Technical Documentation

It is vital to any maintenance effort that efficient

technical documentation exist. Since the source program

0for the compiler is the only guaranteed actual program

logic, a well structured source is the best assurance of

future maintenance.

Small modules, meaningful variable names, and sufficient

commentary to explain alqorithms and routine functions are

a prerequisite to a maintainable system.

1-73



e Debug Tools

When problems arise it is almost imperative that debug

aids exist to help isolate and eventually correct the

problem.

* Skilled Programmers

Usually the implementors of compilers are well versed in

the technical requirement of developing language processing

systems. Often junior level people are hired to maintain

a system. The specification writer should consider the

level of maintenance required when deciding on or accepting

a set of individuals to maintain the compiler.

e Warranty Contract

It is almost always advisable to have the company personnel

that implemented the compiler be responsible for its

warranty. If the warranty is to exist over an extended

period of years, as if often the case, the specification

should attempt to have more than one individual cognizant

of the internal workings of the compiler system. In

addition, the agency which has the maintenance respon-

sibility should be held responsible for the transfer of

knowledge if the individuals are transferred elsewhere.

1-74



The specification should state the response time for the

correction of problems. In addition, a standard method

of reporting problems should be adopted. Periodic status

reports should be made available to users whenever new

problems arise or are corrected.

1-75



Part 2 COMPILER ACCEPTANCE

The development of an objective decision-making process

when acceptina a compiler is extremely important in

insuring a successful compiler system. Part 1 provided a

means of identifying the features and facilities available

for a compiler system and for their reasonable specification

to the vendina organization. The specification charts

developed in Part 1 also provide a meaningful basis for

development of acceptance criteria. In reality, the

weighting factors or scores introduced in this section are

only meaningful in terms of the importance or desireability

of items specified in Part 1.

The approach taken in this guideline is to change numerous

qualitative evaluations into quantitative scores with

weights provided for each cateaory. A summation of the

evaluation provides a compiler score. The score is then

used as an index into an acceptability chart. Since this

guidebook was not developed with any varticular language

or user group in mind, the relative weiahtinq scores

assioned are based on a hypothetical compiler system.

The representative acceptability chart below is based

on a perfect score of 1000 points.

2-1



COMPILER ACCEPMANCE CHART

Score Evaluation

950-1000 Excellent

850-949 Satisfactory
Temporarily

750-849 Acceptable
Completely

0-749 Unacceptable

It seems advisable that future compiler system contracts

include, as part of the payment, an amount based on the

acceptability score. This additional financial remune-

ration could provide the incentive needed to turn accep-

table and good compilers into excellent compiler systems.

In the following sample compiler acceptance matrix, the

acceptance of a compiler is divided into ten parts. Each

part is given an empirically derived total point potential.

The values specified below should be modified to the

particular requirements of the compiler system being

developed. The matrix shows each of the major categories,

potential and eventual actual scores. If certain categories

are not applicable to the compiler systems acceptability,

then the total noint potential of the remaining categories

should be modified accordingly.

2
2-2



Potential Acceptable Actual
Compiler Category Score Score Score
Accuracy and
Reliability 400 360
Resource
Utilization 100 80

User Interface 50 40

Documentation 100 80

System Interfaces 50 40

options 70 60

Extensibility 30 25 .

Transferability 100 80
Schedule and
Installation 75 65
User Profile
Adherence 25 20

TOTAL 1000 850

COMPILER ACCEPTANCE MATRIX

Topics or performance items which do not meet the

acceptable score must be re-worked and evaluated until

the minimum acceptable score is attained for that item.

The followina pages further delineate each of the major

categories when accepting a compiler system. Each major

Category is broken down into a sub-matrix.

2-3



2.1 Accuracy and Reliability

The speed of compilation, minimization of system resources

and superlative user options are of little value unless

the compiler is able to generate valid object code for

higher level source statements. The attributes of

accuracy and reliability are best judged by acceptance

test program runs that are compared with expected results.

There are several attributes of a more general nature

which can be checked for in a compiler that affect the

overall system's accuracy and reliability. The following

matrix depicts the items used to measure a compiler's

accuracy and reliability. This matrix is organized by

the features and structure of languages and compilers.

2-4



Potential Acceptabl Actual
Category Score Score Score

Compilers Internal Structure 100 90
Syntax and
Semantics Analyzers 25 23

Assignment Statements 75 70
Declarative and
.llocation Statements 50 45

Control Statements 25 23

Subroutine Statements 25 23

Input/Output Statements 25 23

Limits 25 20

Documentation/Dianostics 50 43

TOTAL 400 360

COMPILER ACCEPTANCE - ACCURACY AND RELIABILITY

9 Compiler Internal Structure

A compiler can be portrayed as comprising two major

processing functions.

Generator Translator
(Lexical, (Code
Syntax Generator)
Analyzer)

Pmpiler

These compiler elements likewise reflect the five

basic factors which effect compiler reliability:

2-5



Generator Functions Translator Functions

Initialization, jCode Generation
options and Control Operation Code

Addressing
Lex__a__Sanning,___ IRegister UtilizationrLexical Scanning,
Reserve Word Search,
Text Encoding, Optimization
Syntax Analysis Source versus Machine

Register Utilization
___

y
_____

T a 
___

e 
__ Proqram Organization

Symbol Table,
Searching and
Production I First Pass Assem1

f Allocation and IjSecond Pass Assemb
Packing Declaration
Processing

SList ng and Debu A ds

Syntax and
Semantic Checkin@

These compiler functions directly relate to hardware,

operating system facilities, language and the imple-

mentation techniques employed.

Although this representation is somewhat simplified

or general in nature, it does provide insight into thu

inherent opportunities for modularization. Modulari-

zation is the single most important factor in predictic

reliability and ease of maintenance.

2-6



A compiler implemented using structured programming

techniques is also a candidate for high reliability

scores.

In general, then, if a particular set of acceptance test

cases are successfully executed and the compiler is

both modular and structurally programmed, there is a

high probability that similar programs will be valid.

Structured programming and modularization and both

somewhat subjective concepts to measure. Because of

this, a visual inspection of listings and internal

structure flow charts may be necessary. Some items

of interest in such an inspection include:

e parameterization

* meaningful source comenting

S * open-endedness

* size of sub-programs and dependence on complex

scope relationships

* simplicity of linkages and arguments passed

between modules

* indirect addressing and deeply nested pointer

schemes

* degree of isolation of target dependent modules

9 re-entrancy

2-7



9 recursion

* host dependent coding

e Syntax and Semantics Analyzers

Basic components of any compiler are the syntax and

semantics analyzers, sometimes called the parsing

algorithm. The SOFTECH report and other recognized

studies have indicated that the choice of parsing

algorithms is not as crucial to reliability as is its

implementation technique. Items to include in tests

of this area are:

e scanning - number of blanks, multiple operators,

deeply nested syntax

e spelling - use of similar but not equal names

such as abbreviations, extensions,

reversed letters

e searching - speed of search as a function of

label size, number of labels

* recovery procedures - skipping erroneous constructs,

pinpointing errors

* addressing errors - out of range or undefined

labels flagged before "assembly"

e mode definitions - default variable classifications

e uninitialized variables

2-8



e scaling and conversion anomalies - infinite and

0 results predictable at compile time

e bit packing

9 nesting levels

* constant conversion - artificial or host induced

magnitude and accuracy constraints

9 Assignment Statements

Assignment statements are given a high relative weighting

in determining accuracy and reliability. Although the

definition of assignment infers simply computing and

£ storing a value, almost all of the compilers' functions

are tested:

* parsing

* e evaluation of expressions

9 searching

e data conversion

* function linkage

* variable initialization

e fetch and store

* optimization

* parallel, serial, array addressing

* code generation

e cross-reference and user aids

2-9



In particular, in languages allowing multiple assignment,

a simple test may detect complex errors. For example:

I * signed item

J array of floating point items

J(I) , . (I+l)/J(I)

may be defined as:

(I0 +l)/J (I0)' 11
(1O+1) /J (Io) J (10)

or as:

(1O+l) /J(IO)"* I1

or other possibilities dependent on language definition,

and compiler analization techniques, and data conversion

algorithms.

Sample assignment statements can and should be easily

hand checked for expected results.

9 Declarative Statements

Declarative statements exercise parsing, searching,

allocation, initialization, subroutine linkage, addressing

structure and routines. Items which can be best checked

include:

e declarative statement syntax

e mode, value, or array structure assumptions

2-10



e levels of subscripting-indexing

* parallel structure

e packing

e data conversion

• interfaces to assembly/higher languages

e visability of variable placements

* overlay and equivalence

• continuation statements

* statement sizes

e addressing range and virtual locations

e Subroutine Statements

Subroutine or subprogram statements are particularly

important for checking scope, modularity and addressing.

Subprograms should be compiled separately and also

in-line to verify language rules.

* Addressing techniques may become cumbersome or

inefficient in separately compiled structures.

* Identically named variables may be erroneously

addressed or set in nested subroutines.

* High usage core, such as directly addressed

pages in base register machines, may be easily

over-loaded as the number of routines and/or

arguments increases.

2-11



I

* Linkages or register contents should be maintained.

e Re-entrances or recursion may not exist.

* Artificial calling linkages or nesting limits

may exist.

* Registers may be unused or unavailable causing

inefficient code.

* Control Statements

These statements control program flow and sequence of

execution. Tests in this area should include:

e loop control and exiting

* * subroutine calls and returns

s, subroutine control arguments

* computed transfer ranges, defaults, error

detection and data conversion

e user warnings

* parallel and embedded scope

e BEGIN-END structures

e conditionals: IF, THEN, ELSE, WHILE

* addressing range and technique

e instruction set and condition code usage

* Input/Output

There are several major areas of reliability which are of

concern when verifying input/output statement compilations.

2-12



!

These include:

a Timing dependencies - computations may be improperly

made if instruction sequence execution proceeds

during input/output. Similarly, execution times

may increase if wait states occur unnecessarily.

Data may be lost or filled during hardware mal-

functions.

e Machine independence - the modularization of I/0

routines, pointers and run-time package linkages

should be verified.

9 Artificial coding restraints - source language usage

should not be tied to record sizes or block control

flags unless specified in the language.

* Parity and data checks should be verified to insure

integrity of the source program computations.

e Format statements and similar input/output

structures should be tested for data conversion,

packing and error checking capabilities.

e Limits

Internal compiler structure limitations can be tested

via several of the statement types previously listed.

Of particular and common interest are ranges of values for:

2-13



e compiled program array dimensions and execution

time index values which are out of range -

default conditions, error recovery, compile

time checks, maximum values

9 label sizes

* character constant sizes

e record sizes for I/O

s array dimensionality maximums and the relationship

of dimensionality to object code efficiency

e FOR-DO loop nesting limitations

* FOR-DO loop scope limitations

e nesting of array indices
U

e nesting of subprogram function calls

e nesting of IF THEN ELSE structures

e number of subprograms

e number of continuation lines and characters

in a statement

* maximum program (loadable)

* maxim= number of items, tables, arrays, symbols

o dynamic table re-allocation (when a limit is reached)

e operator/operand sequences

o nested parentheses

s COMMON or COMPOOL sizes

2-14



9 Documentation and Diagnostics

Accuracy and reliability are also important in system

and user documentation. The results of previous language

constructs and compiler implementation tests should have

been predicted in the vendor documentation.

This is particularly true of limit tests, data conversion

anomalies and input/output characteristics. If vendor

documentation does not contain a high percentage of

correctly predicted limits and anomalies, then it is

probable that the vendor has not performed adequate

reliability and accuracy tests.

Similarly, re-hosting or re-tarqeting documents should

be randomly checked for accuracy. If a routine is

documented as having a particular function, it should

be checked by visual inspection of the code and by

trace and dump techniques.

All error messages should be purposely generated by test

and compared to user documentation. Again, if the

documents do not reflect the actual results, some

feeling for compiler reliability may be surmised.

The following list is a representative sample of conditions

which should be included or checked in acceptance tests.

2-15



The language and computer system chosen are paramount

to specification of specific accuracy tests. The

vendor should prepare these tests using at least the

following:

e existing compiler or hand-calculated benchmark

results

o misspelled names

o duplicate names

. mode definitions

o uninitialized variables

* absent terminators

o bad nests of all types

o improper variable modes (floating point loop

control)

o recursion

o improper data conversions

e GO's and SWITCH's on bad values

* constant redefinition: CALL SUB(5)

SUB(X)

X-X+l

e values of FOR loop variables outside the loop

o magnitude of loop variables (use large values,

negative values, etc.)

2-16



0 bad patches

* erroneous packing specifications

e improper semantics

* multiple, undefined operator sequencies: X-Y++l

* user un-optimized code

* compiler "private" symbols and characters

e floating point underflow/overflow

e array overflow/underflow

* undefined variables

* misplaced parameters (TABLES)

e incorrect data types: FLOAT (FLOAT(

* assembly language subprograms

2-17



2.2 Resource Utilization

Efficiency of the compilation process and of compiler

produced object code can be viewed in terms of use of

available resources. These resources might include:

Potential Acceptable Actual
Category Score Score Score

CPU processors (time) 40 30

Core storage 10 8

Instruction set 20 18

Eeripheral devices 5 4

Registers & Addressing 10 8

Programmer Productivity 10 8

Numeric Accuracy 5 4

TOTAL 100 80

COMPILER RESOURCE UTILIZATION

Acceptance tests prepared for the purpose of judging

compiler resource utilization must somehow be compared

to known standards. The comparison of one compiler to

another is often meaningful only if both show the same

pool of resources. Otherwise, it is the configuration

of hardware that is being judged and not necessarily

the compiler software.

2-18



Similarly, both compilers would be required to solve the

same compilation problems - parsing, evaluation, opti-

mization, and code generation. If such a comparison

compiler is available - same language, host and target,

the new compiler may be compared exactly on a test by

test basis.

Each compiler may excel or falter in a particular test

case situation. Therefore, a compiler based comparison

will, at best, determine the *efficiency" of the new

compiler only in terms of the type of test. Compiler A

may be efficient for small subprograms while Compiler B

may do better in large program situations.

It appears that the only reliable benchmark for resource

utilization comparisons is an assembly language imple-

imentation of the same application program.

The area most likely to be deficient in benchmark

comDarisons is instruction set utilization. For example,

the statement ALPH-ALPH + I often produces

LOAD ALPH

ADD #ONE

STORE ALPH

#ONE DATA 1

2-19



This utilizes four memory locations and three instruction

"cycles". If the target computer contained an increment

or memory-add instruction, the code could be reduced to:

INCREMENT ALPH

or LOAD 1

1ADD ALPH

At this point, it should be stressed that computer design

can have a great deal of influence in compiler speeds and

core storage requirements. Certain aspects of computer

architecture are especially important to language processor

design and performance. In particular:

0 Direct Addressing Capability

The computer should have the ability to readily

address and access information and data consistent

with the system core sizing requirement. For

example, if the system core requirements were

* 4096 words, 12 bits of a computer word would be

necessary to effect direct addressing access;

if 32,767 words were required, then 15 bits

would be necessary, etc.

• Multiple Purpose Register Facility

The computer should have a set of multiple registers

which can be utilized and manipulated in a variety

2-20



of different fashions. Several functional charac-

teristic of these registers are that they should

function as:

a. Accumulators

b. Index regiqters

c. Masking registers

d. Control registers

e Partial Word Accessing and Utilization Facility

The computer should have the ability to fetch,

store, test, position and manipulate variable

length contiguous portions of a computer word.

Associated with this capability must be the

ability to treat the data as signed or unsigned

variable length information when involved with

the particular operations.

o Conditional Testing and Branching Capability

The computer should have the full capability of

supporting comparative relational conditions

such as equal, not equal, less than, less than

or equal, greater than, and greater than or

equal. This capability must ideally provide

for register-register, register-memory and

memory-memory comparative facility.

2-21



* Arithmetic Computational Capability

The computer should have the capability to

support the full computational capabilities

of addition, subtraction, division, multipli-

cation and negation. This facility should

provide for full and partial word operations.

e Shift Operation Capabilities

The computer must have the capability to support

both algebraic and logical shifts in two directions

on individual multiple purpose registers and

between multiple purpose registers.

e Logical Operation Capabilities

The computer should have the capability to

support the logical operations: AND, OR, NOT,

exclusive OR, EQUIVALENCE, etc.
e Special Instruction Capabilities

The computer should have a group of special

purpose instructions designed to accommodate

frequently occurring programning situations

in the particular application system. These

include the following types of commands:

a. Execute

b. Store zero

c. Transfer on register or memory zero

or non-zero.

2-22



I.i

d. Transfer on register or memory negative

e. Halt

f. No operation

g. Test, set, reset, test & set, test £ reset

h. Increment/decrement

If the above features are not avoidable, efficiency ratings

must be adjusted to reflect computer inadequacies.

Once a set of assembly language benchmarks has been

prepared, the following statistics may be gathered:

* compilation time - compilation computer time/

assembly computer time

* programmer productivity - source program

preparation cost/assembly program preparation cost

* object storage * compiled program size/assembly

program size

e object time - execution time-compiled/execution

time/assembled

* numerit accuracy - precision of compiled program

results/precision of assembled program results

e compilation storage - total core storage for

compilation/assembly

* overhead time - minimum cpu time necessary for

void or "nothing" programs-compilation/assembly

2-23



9 overhead storage = minimum size of object programs

e capacity - maximum source program size-higher level/

assembly level

o peripheral - devices used (tape, disc, drum) and

number of accesses

Many of the statistics listed can best be obtained using

built-in performance measurement facilities. A compre-

hensive system for compilation/execution measurement

statistics gathering should be included in every compiler

procured. Their cost is minimal and their value in

programmer aid and compiler "tuning" is considerable.

These statistics gathering facilities can be and should

be capable of producing size figures by statement type

for!

o declaratives

o assignments

o data conversions

o loop controls

o structured controls (IP,GOTO, etc.)

0 input/output

o modularity constructs (subroutine linkages)

The figures of merit in these instances include:

.o compilation time

2-24



9 compilation space

* register utilization in the object

* machine features used - indexing, indirect

addressing, pointers, overlays, instruction

set, hardware stacks

* execution time

* execution space

* 1/o time

* I/O wait states

* disk/drum/tape accesses

9 record sizes

r * data region size

* bit size - packing (full word?)

o number of compilations/assemblies to working

programs

The resource utilization sub-Patrix scores are computed

from the statistics gathered and compared to empirical

(desired or experienced) values. The actual assignment

of scores depends upon the statistics available and the

weight given to each attribute.

2-25



RESOURCE UTILIZATION STATISTICS

CATEGORY INPUT ATTRIBUTES

CPU Usage Compilation time
Object time

Overhead time

~1/0 
wait time

Core Storage 
Compilation storage

Object storage

Overhead storage
~Capacity

Bit size - packing

Data region size

Instruction Set Instruction frequency counts

Special instruction usage

(increment, memory add, etc.)

Peripheral Devices I/O times

I/O accesses by type (disk,

drum, tape, etc.)

Record sizes

Registers Register usage frequency counts

Indexing

Pointers

Stacks

2-26



!

CATEGORY (continued) INPUT ATTRIBUTES

Addressina Direct

Indirect

Pointers

Indexed

Stacks

Sub-words

Programner Productivity Number of compilations/

assemblies per program,

Statistics available on

language usage,

Statistics available on

statement speed and bottlenecks,

* Time to prepare programs.

Numeric Accuracy Precision of program results.

Number of data conversions.

Use of special registers

(floating, double, etc.).

2-27



2.3 User Interface

-* The acceptability of the compiler - user interface is not

as quantitative in nature as accuracy or resource utili-

zation. However, there are several important aspects of

the user interface which can be identified. These include:

e Partial compilation facilities

e optimization levels

* guided optimization

9 graumar/syntax checking

* object suppression

e diagnostic override
9

e Assembly level facilities

" assembly level listing

e user access to symbols/tables

o easy subroutine linkages

e Diagnostics

e explicit messages rather than numerical codes

* * error pinpointing - to source line symbol, operator,

punctuation, etc.

e previous error recovery - eliminate domino-effect

errors

e error messages within the listing, not at the end

2-28



* error levels w arning, bad, disastr'ous, etc.

e error recovery - assume obvious or non-fatal

conditions and continue com~pilation

o spelling -check for "close" spellings and proceed

with compilation

A representative weighting scheme is:

Potential- Acepta le Actual
Category Score Score Score

Diagnostics 35 29

artial Compilation 10 a
ssembly Level
acilities 5 3______

TOTAL 50 40 ____

USER INTERFACE

2-29



2.4 Documentation

A compiler may be functionally correct and translate

code properly without being completely documented.

However, future maintenance, extensibility, re-targeting

and user interfaces will suffer accordingly. In addition,

a poorly documented compiler is highly likely to be

an unreliable one.

There are three classes of documentation of concern to

the procuring agency: compiler implementation, user's

guide, and operator's quide.

In the implementation documentation, several items will

seem unimportant upon initial receipt of the compiler.

Nonetheless, they will become more apparently valuable

as time progresses.

Implementation Documentation

e Compiler limitations and idiosyncracies

e Compiler source listings

* Flow charts, prosaic descriptions of every compiler

module and variable

* System interfaces

* Re-targeting guidelines with a sample actual re-target

effort

2-30



* Extensibility guidelines with a sample extension

* Compiler organization, allocation, tables and packed

variables

e Functional breakdown (parser, expressions evaluator,

optimizer, etc.)

e Each "pass" functions

* Debug aids and measurement tools

9 Re-generation procedures

* Causes (internal) of error messages

* Input/output, records, blocking, etc.

* Language of implementation

0 Algorithm description - polishing, parsing, etc.

* Database definition

* Parameter parsing and subroutine linkage

e Variable addressing scheme

e Lexical scanning, text decoding, searching

* Special modes such as loop-save, conditional

e Syntax analysis

e Compiler generated symbols and naming conventions

e Access to symbols - symbol table structure

e Proposed enhancements and costs

This documentation must be supplemented by a comprehensive

guide to expected modification difficulties and accurate

2-31



in-line comments in the compiler code. These cements

should be checked for accuracy against other documen-

tation and test results.

The second category, user guidelines, should be equally

exhaustive and complete. However, unlike poor imple-

mentation documents, errors or omissions in user guides

will become rapidly and glaringly apparent.

User Guidelines

• Diagnostics - description, cause, correction procedures

* Language description - a comprehensive user oriented

description of the language implemented with numerous

examples, cross-referencing and job setup procedures.

* This document should contain two approaches: beginner's

ltutorial and experienced users' reference.

e Capacities, limits, minimum requirements

* Compiler idiosyncracies

e Transferable programming guidelines

9 Dialectic or subset differences, items not in adherence

to a standard

* Visual training aids

e User flow charter

e Assembly/other language interfaces

2-32



The operator's guide is also the type of documentation

that will be immediately verifiable. The procuring

agency should insist on a "no-vendor" installation by

agency personnel. Most difficulties and omissions in

the operator's guide will be rapidly apparent.

Operator's Guide

e Devices necessary to system residence (disk packs,

system tapes. tec.)

9 Peripherals used during execution - mounting procedures,

labeling conventions, etc.

* System (compiler) installation procedures - step by

step

e Re-generation procedures

* Disk file maintenance - scratching and compressing

schedules and limits

e Core requirements

* * Multi-task versus stand-alone operation

* Operator messages and responses

* Compiler options (operations oriented)

* Hardware/console switches

2-33



Potential Acceptable Actual

Category Score Score Score

Compiler Implementation 50 40

User's Guif e40 33

Operator's Guide 10 7

TOTAL 100 80

DOCUMENTATION

Further explanation of the items listed in this section

may be found in Section 1.9, Documentation Specification.

-2'-

:: 2-34



2.5 System Interfaces

User access to computer files, linking of object modules

and conditional compiler use and outputs are just a few

of the system interfaces each user will experience. The

following items should be provided by the vendor and

adequately described. Procuring agency acceptance of

these items should not be assumed.

* Job control requirements

e Operating system usage

* Text editor and similar utility interfaces

e Object language interfaces with other system routines

and languages

e Device independence/dependence

e System subroutines

* Resource requirements

e Compiler debug facilities/requirements

e Load time system overhead-core,devices, etc.

* Batch, remote, interactive and on-time requirements

* Execution time and I/O wait states expected as a

function of system load

9 Minimal configuration

* Re-entrancy

a Multi-processing

2-35



For additional descriptions please refer to Section 1.7,

System Interface.

Potential Acceptable Actual

Category Score Score Score

Job control 20 15

Resource Requirements 5 4

System Routines 5 4

Devices - IO 108

Utility Interfaces 10 9

TOTAL so 40

SYSTEM INTERFACE

2-36F



rI

2.6 Options

Section 1.3 discusses compiler options which may be

specified in the procurement of a compiler system.

Option requirements and needs are divergent among

installations, personnel, and applications and are

usually dictated by available resources.

Of all the optional features listed in Section 1.3,

the most variable and expensive will be optimization.

The following chart represents a general concensus of

the relative importance of the most popular optimization

techniques and can serve as criteria evaluating compiler

optimization acceptance.

2-37



544

$4 0P

44 V v tS VII V V

ix 0 Fj~066

o ~ g C s-

U )0 0 c

uA

-

0.
41 a 0 01 0 0 ~

$4 .4 .4 .4

In. I I

00
c 0 0

0 "q to

4) 0-0 .4J la 0 ;r- 4

U41 wH P-4 4 >N

0.C~6 0-C4a 0 rk.

X002K0-4C '-94 4.4
r9.4 r,.-~.~ u- i~4 CS

r-4 + "q &n oc a) + EU 0 + H4j -41 r in ccn0- A x0

2-38



0 1 yjO 11 1Y
0 p1 0

0 toV 'U v o ' U 'v '

u0.0 0Q.- 0 .. 0
C -4 -4-A6 AA. A~

.9NN,

1A V~ 4j.

Iq rir , 0)"I

u.0-6 A A V

41~

14-

4)3t4617'V 0'

m Ve 64 w2

2-39 $



Potential Acceptable Actual
Category Score Score Score

User Debug Facilities 12 10

Optimization of Code 13 11

Measurement Tools 17 15

Test Aids 10 9

Documentation Aids 5 4

Cross/Reference/
Dictionary 3 2

Text Source Processing 5 4

Partial Compilation 2 2

Compilation Directivesj 3 3

TOTAL 70 60

OPTIONS

K
2-40



2.7 Extensibility

A compiler is extensible if it can be easily modified

to include new features. Perhaps the best way to test

for the acceptability of this feature is to insist upon

a demonstration. In other words, after the compiler

has been implerented and delivered for acceptance testing,

a new feature, statement or primitive should be added

to the language. A detailed written description of all

steps taken to implement the new feature should be kept.

This would include:

* source updates

o source additions (new code)

o re-compilations

o re-linking

o self-test

o errors, cause and corrections

@ man-hours

o estimated relative difficulty

This workbook and other deliverable documentation should

give an indication of the degree (score) to which the

following extensibility attributes have been used:

* documentation

o modularity - number of programs changed and

2-41



percentage of code changed in each module

o open-end design - array structures, tables,

intermediate languages that required re-definition

o structured programmning - degree of difficulty

in locating appropriate code and success in

changing it

* compiler restrictions - syntax, usage of the

new features

o parameterization - array entries, pointers,

tables, parsing algorithms

See Section 1.4, Extensibilit , for additional description.

Potential Acceptable Actual
Category Score Score Score

Modularity 9 8

Documentation 6 5

Open-ended 4 3 ______

Paramfeterization 5 4

Structured Proqrarmina 4 3 ______

Compiler Restriction 2 2 ______

TOTAL 30 25 ______

EXTENSI~BIL ITY

2-42



2.8 Transferability

Transferability of a compiler can refer to changing the

host or compiler resident computer or to changing the

target or object machine. Perhaps the most likely and

therefore critical of the two is re-targeting. Most

installations which procure a rather expensive compiler

expect to utilize the host machine for an indefinite

period of time. New applications and target computers

can be required at relatively short notice, however.

The design aspects which most directly effect transfer-

ability of host or target are the same as those listed

for extensibility:

" modularity

* documentation and source comments

e parameterization

" structured programming

" open-ended design

In particular, all host and target machine dependent

attributes must have been parameterized and/or isolated

to specifically identified modules. The documentation

must clearly reflect all machine dependent constants,

algorithms and programs.

2-43



V
The suggested test for extensibility is also the best

way to judge transferability - change the conditions.

It is considerably more expensive to re-host or re-target

in most instances, however. Por this reason, the exten-

sibility test can be used as an approximation of re-hosting

difficulties. If that test showed high reliability of

comments, modularity and parameterization, then the

re-hosting task has probably been minimized. Of course,

re-hosting difficulties are also a function of imple-

mentation language - technique. Self-compiled or inter-

pretative compilers will be most easily transferred.

Assembly level coded compilers are virtually non-trans-

ferable. Since re-targeting of the compiler is highly

probable, transferability of object is of most immediate

importance. Modularity is again the keyword.

In modern compiler technology, it is possible and

relatively easy to isolate all target machine dependent

code generation into one set of independent modules.

Optimization modules, if present, should be mathematical

processes divorced from machine parameters.

The code generator portion of the compiler should be

approximately 30% of the total depending on language and

target.

2-44



Again, the best way to judge re-targetability is to

procure another target and insist on use of agency or

different vendor personnel in the effort. if this is

possible, then the previously assigned scores for modularity,

documentation and parameterization can be used again.

Potential Acceptable Actual-

Categor Score Score Score

Modularity 40 32

Documentation 20 15 _____

Parameterization 10 9_____

Implementation Lan uae 30 25 _____

TOTAL 6 1Z00 s0o_____

TRANSFERABILITY INDICATORS

* Additional discussion of transferability may be found

in Part 1.

K' 2-45



2.9 Schedule and Installation

Assigning a score for schedule and installation performance

is a highly subjective task. The schedule had been deter-

mined in the specification and contract negotiation phases.

If 1b is assumed that the schedule was a realistic one,

then failure to meet delivery dates and milestones will

probably result in payment delays. In most cases, delay

of payment is usually sufficient penalty to the vendor.

A score is somewhat valuable, however, in helping to

determine efficiency and reliability of the compiler.

Proper milestones can help to insure checkout and

acceptance of each phase of the compiler and thus

improve the chances that the final product will be

reliable.

Schedule milestones for a typical compiler project were

discussed in Section 1.10. For acceptance scoring purposes,

the following major categories can be used.

Potential Acceptable Actual
Category Score Score Score

milestones On-Time 5 4
Documents Complete at
Each Milestone 15 13
MIestone Coding
Complete 10 9
Errors at Each
"Milestone 10 9
waintenance

__35 30

TOTAL 76

SCHEDULE AND INSTALLATION

2-46



Errors at each milestone refers to the number and severity

of errors encountered - usual, fewer than usual, abnor-

mally large number, etc.

Maintenance arrangement refers to the ease and rapidity

in which error reports are handled. Does the proper

person(s) respond or is the task shuffled from senior

to junior personnel? Is the time of response acceptable,

quicker than expected, poor? Does there seem to be a

lot of head-shaking and throwing-up-of-hands or are

errors handled quietly and professionally?

Milestone codinq and documentation should be complete.

Was the code/document submitted just to meet the dead-

line and incomplete or inaccurate? Does each milestone

delivery "stand alone" and reflect modular design

techniques?

Training will probably be given the highest weighting

in this category. Some items to consider in scoring

the training function include:

• Adequacy of personnel used - were they the implementors

and users, or professional teachers?

• Range of subject material - did it include the full

range from design concepts to maintenance and

enhancements?

2-47



* Depth of subject material - was each program module,

source language type, and system generation procedure

covered completely?

* Time frame - is training on-going, repeatable, hurried,

etc.

* Agency personnel - are the trainees confident in their

use, maintenance, and modification ability? Do they

"understand" the compiler or are they just going

through the motions, etc.?

* Options - were all options explained and demonstrated?

* Error detection and reporting - were procedures

developed and explained for determining when bugs

exist and for reporting them to the vendor?

* Hardware and operations - have the proper personnel

been instructed on use, initial program load, error

recovery, and similar operational problems?

2-48



2.10 User Profile Adherence

In Section 1.8, several aspects of the User Profile or

cross-section of user requirements were listed. At this

point in the acceptance testing of the compiler, the

procuring agency must determine if the delivered product

truly adheres to the desired aoals of the end-users.

Several subtle changes may have been introduced which

could have the effect of eliminating classes of users'

problems. For example, were fixed-point variables

changed to floating point for "efficiency" by the

vendor? Are fewer users able to compile simultaneously

* while maximum source program size has increased/decreased?

The suggested weighting scheme is based on a broad range

of users and should be changed accordinq to the parti-

cular agency's most basic requirements.

Potential Acceptable Actual
Category Score Score Score

Compiler type 6
batch, etc. 9 6

Response Time 5 4

Number of Users 7 6
Relative Efficiency
(Compile/Execute) 5 4

TOTAL 25 20

USER PROFILE ADHERENCE

2-49



Part 3 Compiler Acceptance Evaluation Matrix

The Compiler Acceptance Evaluation Matrix is a

summarization of the sub-matrices listed in Part 2.

Please note that the specification matrices in Part 1

were not included in the Acceptance Evaluation Matrix.

Although it might seem desireable to place specifi-

cation and acceptance items in a side-by-side or

hierarchial fashion, this is really not meaningful.

Part 1 discussed specification decisions, documents,

costs and similar items to be prepared or studied by

the procuring agency. Thus, a rating or performance

score cannot be assigned to these activities and no

scores were assigned to specification items in

Part 1.

It is reasonable, however, to use the discussions in

Part l as a basis for preparing potential minimum

acceptable, and actual criteria evaluation scores

for the items listed in Part 2. If the procuring

egency stressed a particular item in its specification,

then all acceptance criteria effected by that item

would be weighted heavily.

3-1



Por example, if precise language definition was stressed

in the specification, then the accuracy and reliability

of syntax/semantics analyzers (acceptance criteria)

would be heavily weighted.

The sample Compiler Acceptance Evaluation Matrix provided

is based on a hypothetical "average" compiler. The

values assigned, therefore, represent composites of

values derived from the analysis of several languages

and their compilers.

The procuring agency should prepare a new set of

potential scores as a function of language, project,

user group and other constraints discussed in Part 2.

For example, a file managerent system written in

COBOL would probably not depend heavily on numeric

accuracy (past 3 decimal places) or even resource

utilization; but, it is likely that system interface

would be extremely important.

In the Compiler Acceptance Evaluation Matrix, the

following titles are used:

POTENTIAL SCORE: The weight or importance of

the criteria in relation to

a total score of 1000.

3-2



MINIMUM ACCEPTABLE: The minimum POTENTIAL SCORE

which would constitute an

acceptable performance.

ACTUAL SCORE: The value or percentage of

POTENTIAL SCOPE which was

actually observed in evalu-

ating or testing the compiler

criteria.

PASS/FAIL: A check indicates that the

actual score was less than

, acceptable: a failure. In

this case, re-work and re-

evaluation would be necessary

before total acceptability

can be attained.

COMMENTS: Procuring agency notes or

cotmments regardina the test

used, score attained, value

of the criteria, etc.

3-3



fro4

2 4 41

WNM V'nn* cc% *Sle

U .
Z@

c -0

'-44

"4 U -v >

41 41 41 4 0 " 1w 4 00O
9 4 W. 1 V 4041 1

1%6 4 4 4 4J w 0, a 14 1
N . 4 P'4 4 0" t 4 V- 4l

V ij(4 0 4 P 40$

1. oi5."800Sad 
c * 0'.4%k55~. ca4 1- I1 ad k.4 W ~ 4

U.U. dK Of 0 0 0 00 0

3-41



. 4

00 00 0W4,e

z

'P4

.4

0.04 V C 64
Liz

W4 v*-VE441 0
A. u f

o) >4 0 "4 00W0 04A0uo SK

0 atA 4 0 5S
Cs1 4 -.4

64 f.i 0 O

3-5



4. A. 4.' Ne M N C

04b.

m M Lr 94 m 0 m w% W44in - 4 c Mo
en -0 C1 Y. c

1-4 -p v-..0

14 M40m4

bu 0J $44i P-4 -A"4u4

a, &( 491 "4 IV I o 4iv" M N-4 :4 t 41W C4
e 0. 4%0 6~M%~~f4U 4 4 ov$ 1 r 410f 144 0 0

PO.4 A A 4 a
4V -A 20 1 ~u"4 C 4 04U

w 0u4 ~E0a 04IC A " C 0 fo
9 on U 0 x 4 44O1 64 CL

~.di 0504 W04 00 Fa.4

01 .41 .4J~I~ 4 *4 C 4
.0 *e S E J4 0 U SES

04 00000000ISU0 N 690060 1- 00ee*

A.W4LU1 UB 00U2 4-



LI.

E- M

-A
44l

it4 0 -- 1

pJA~ 0~ Q u 44r
W. 00 m 4m-100"4co

U W4 UW L 4 :" :

- --- - -



Notes from COMPILER ACCEPTANCE EVALUATION SAMPLE MATRIX

Note 1: Documentation incomplete or erroneous. Must be

redone. Note: Actual total exceeds minimum yet

compiler is not satisfadtory due to documentation.

Note 2: Compiled Proqram would not fit in core. Basic

benchmark not satisfactory. Code optimization

and more efficient code generator necessary.

Note 3: Satisfactory.

Note 4: Errors in documentation.

Note 5: Satisfactory.

Note 6: Very Good.

Note 7: Errors in documentation.

Note 8: Incomplete, erroneous documentation.

Note 9: Would not compile basic benchmark adequately.

0

3-8

I J



10

U x muz H r.) z
ItZ

z ZU

-4

4. V4 g

41 W40Vl 41 

m1 $i4 0416A1 .1
Mopmoo 0 .41

. 0 9 w4 P 0 U Ol J A ,
9)4JC In u 9 A 4 u $4 01'~

~~~ 'p4 ?)" C,4 U)I 41 'I 61 1

dc~ es1N64 e 0 see 0 41 0 0v

U 0 0N.~E0441 ~ 1 ~03-96



90 H

x4

z a

U X acH

"- "14 a- . 4

to-4Vc 4

4c r I94 4 l la-M 4)

$4

4) 1 P4 ~ 000 1) m I
$4 MV4 944J V 0 ) 4 0J C Un>
0 a 0a .41 c 0 ow 44

ao -v EV 2 1 "4 0 u 0JI- 4 "4

Ur 41 4 4J c 01 V 0 A -0 P-~ 41

"q 4 0 W4 4) 41 4* D0 b4 U41

3-10



040

o z

0

54

zo

17 0

4 )4) 0 >

V40 In 9) 0
P4 N 0-

.i 4Q in0~ 0

MW 0.,f) P4 V 4J4laor r 01)v 0 s 4 PC o.4o m a W430 44) m * $4 U 41 0 ' .4 4) Aj '
64 to 4)~ 0 0 41 %A -4 4)V4)0 . 0U4g~ 0 ..o v-4 ~ N 41 4 4) do

:5V "4 % .4 $44 1 3 A m0
V w W4I 00 4143)

.Q .- ~g (),4 1"a.

3-11



0

u z U

~~ Ii

0. 0

"4 4) 0
41 V- C *P4

w- E 4

0 ci V 0 L" A V44X: c1 0 0 I

b~ 0. UC4S v ' 4 -4 -0 464 X .

0 go41 S 41 100 4j 0 %4 V

0 0 or'4 0 r4 4v a V 4 S a 00 4 V1
415 CL41 0.0 04 -a 4w 0- k cr -rO .

SE E k~ v-.4 4) 0 -. e4 41.
fa '4 08O 0"4C c~ mto

0 r4 04 $4 0:V .r

3-12



APPENDIX A REFERENCES

Aho, Alfred V., Ullman, Jeffrey D., The Theory of Parsing
Translation and Computing, Volume II: Compiling,
Prentice-Hall, 1973.

Brandon, Dick H., Segelstein, Sidney Esq., Data Processing
Contracts - Structure, Contents, and Neqotiation, Van
Nostrand Reinhold Company, 1976.

Hays, David G., Introduction to Computational Linguistics,
Americal Elsevier Publishing Co., Inc., 1967.

Hictran, Bryan, A Comparative Study of Programming Languages,
Americal Elsevier Publiching Co., 1967.

International Computer Systems, Inc., A Proposal For
"A Statistics Gathering Package for the JOVIAL Language,"
RADC RFP No. F30602-73-C-0062, 1973.

Knuth, Donald E., The Art of Computer Programminc, Second
Edition, Volume 1, Addison-Westley Publishinq Co.,
1968.

Lee, John A. W., The Anatomy of a Compiler, Van Nostrand
Reinhold Company, 1967.

Minsky, Marvin (Editor), Semantic Information Processing,
The MIT Press, 1968.

Neighbors, Michael A., "Assuring Software Reliability,"
"Computer Decisions," December, 1976.

Proprietary Software Systems, Inc. (Fleiss, Joel; Phillips,

Guy), "A Statistics Gathering Package for the JOVIAL
Language," RADC Report No. RADC-TP-73-381, January,
1974. AD#775380/9GI.

Proprietary Software Systems, Inc., A Proposal For "Criteria
for Evaluating the Performance of Compilers," P)DC
RFP No. TR-74-254, October, 1974.

Proprietary Software Systems, Inc., "Proqramming for
Transferability," RADC Renort No. TR-72-234, September,
1972. AD#750897.

1 -I1



RADC document, "Notes on the Future Considerations Regarding
Compiler Specifications."

Samumet, Jean E., Programming Languages: History and
Fundamentals, Prentice-Hall, Inc., 1969.

Shirely, Richard, "Performance Evaluation Computer,"
September/October, 1972.

Shirley, Lynn D., "Compiler Specification Guidance,"
July 31, 1973.

Softech Inc., (Bloom, Burton H., Clark, Mac H., Coe,
Robert K., Feldman, Clare G.), "Criteria for
Evaluating the Performance of Compilers,"
RADC-TR-74-259, October, 1974.AD#A002322.

System Development Corp., "A Guide to Computer System
Measurement."

Walsh, Dorothy, A Guide for Software Documentation,
Advanced Computer Techniques Corp., 1969.

A"

A-2



Acknowledgement

Proprietary Software Systems would like to acknowledge

the contributions of the following individuals to the

preparation of this report.

Marilyn Azaria
James Leggett
Lois Orgo
Douglas White

In addition, Proprietary Software Systems acknowledges the

sponsorship and excellent support of the Air Force System

Command, Rome Air Development Center, Griffiss Air Force

Base, New York 13441.

A-3



METRIC SYSTUE

BAS' UNITS:
Quantity Unit Sl___ bol - Formula

length metre m ...
mass kilogram kg.
time second .
electric current ampere A ...
thermodynamic temperature kelvin K
amount of substance mole mol ...
luminous intensity candela cd ...

SUPPLEMENTARY UNITS:
plane angle r:,dian red ...
solid angle steradian sr ...

DERIVED UNITS:
Acceleration metre per second squared misactivity (of a radioactive source) disintegration per second ... (disintegration)a
anguiar .icceleration radian per second squared ... rad/s
angular velocity radian per second ... redis
ares square metre ...
density kilogram per cubic metre kg/inelectric capacitance farad F A-s/V
electrical conductance siemens S AN
electric field strenj:h volt per metre ... Vimelectric inductance henry I'l V.s/A
electric potential difference volt V W/Aelectric resistance ohm VIA
electromotive force volt V W/Aenergy joule I N-m
entropy joule per kelvin ... J/K
force newton N kg.m/sfrequency hertz Hz (cycle}y
illuminance lux Ix Im/mluminance candela per square metre ... cd/mluminous flux lumen Im cd.armagnetic field strength ampere per metre Aim
magnetic flux weber Wb V-smagnetic flux density tesla T WbIm
magnetomotive force ampere A
power watt W Papressure pascal Pa N/mquantity of electricity coulomb C A-s
quantity of heat joule I N.mradiant intensity watt per steradian ... W/sr
specific heat joule per kilogram-kelvin ... J/kg.K
stress pascal Pa N/mthermal conductivity watt per metre-keivin ... Wlm.K
velrx;ity metre per second ... m/sviscosity, dynamic pascal-second ... Pa.sviscosity, kinematic square metre per second ... nIs
voltage volt V WIA
volume cubic metre ... m
wavenumber reciprocal metre (wsveym
work joule I N.m

SI PREFIXES:

Multiplication Factors Prefix ,1 ,ymbtA

1 000000 000 000 - 10" tors T
1 0"0 000 000 a 10 mile G

1 000 00 - 10 mele M
1000- 10' kilo k

100 = 10' hecto6 h
10 - 10' doka" do

0.1 o 10-' decl* d
0.01 a 10- 3 ,:entl c

0.001a t0 - ' mll m
0.000 001 a 10-6 micro A

0.000 000 001 - 10" nano
0.000000000001 = 10-' pIco0.000 000000000001 - 10' fomlo0.000 000 000 000 0 00al 10- ' e  alto

To be avoided where poeible. W.X GOVERNMENT PRINTING OFFICE: I?7--?I4-Ol/I


